Countable compactness of lexicographic products of GO-spaces
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 3, page 421-439
- ISSN: 0010-2628
Access Full Article
topAbstract
top-
the lexicographic product
X^2 X -
\omega _1^2 \omega _1\times \omega (\omega +1)\times (\omega _1+1)\times \omega _1\times \omega \omega _1\times \omega \times \omega _1 \omega _1\times \omega \times \omega _1\times \omega \times \cdots \omega _1\times \omega ^\omega \omega _1\times \omega ^\omega \times (\omega +1) \omega _1^\omega \omega _1^\omega \times (\omega _1+1) \prod _{n\in \omega }\omega _{n+1} -
\omega \times \omega _1 (\omega +1)\times (\omega _1+1)\times \omega \times \omega _1 \omega \times \omega _1\times \omega \times \omega _1\times \cdots \omega \times \omega _1^\omega \omega _1\times \omega ^\omega \times \omega _1 \omega _1^\omega \times \omega \prod _{n\in \omega }\omega _{n} \prod _{n\le \omega }\omega _{n+1} -
[0,1)_\mathbb {R}\times \omega _1 [0,1)_\mathbb {R} \mathbb {R} -
\omega _1\times [0,1)_\mathbb {R} -
both
\mathbb {S}\times \omega _1 \omega _1\times \mathbb {S} -
\omega _1\times (-\omega _1) X=\langle X,<_X,\tau _X\rangle -X \langle X,>_X,\tau _X\rangle
How to cite
topReferences
top- Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Herdermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Faber M. J., Metrizability in Generalized Ordered Spaces, Mathematical Centre Tracts, 53, Mathematisch Centrum, Amsterdam, 1974. Zbl0282.54017MR0418053
- Kemoto N., Normality of products of GO-spaces and cardinals, Topology Proc. 18 (1993), 133–142. MR1305127
- Kemoto N., 10.1016/j.topol.2013.11.005, Topology Appl. 162 (2014), 20–33. MR3144657DOI10.1016/j.topol.2013.11.005
- Kemoto N., 10.1016/j.topol.2017.09.026, Topology Appl. 231 (2017), 276–291. MR3712968DOI10.1016/j.topol.2017.09.026
- Kemoto N., 10.1016/j.topol.2017.10.017, Topology Appl. 232 (2017), 267–280. MR3720898DOI10.1016/j.topol.2017.10.017
- Kemoto N., 10.1016/j.topol.2018.03.004, Topology Appl. 240 (2018), 35–58. MR3784395DOI10.1016/j.topol.2018.03.004
- Kemoto N., The structure of the linearly ordered compactifications of GO-spaces, Topology Proc. 52 (2018), 189–204. MR3734101
- Kunen K., Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980. Zbl0534.03026MR0597342
- Lutzer D. J., On generalized ordered spaces, Dissertationes Math. Rozprawy Mat. 89 (1971), 32 pages. MR0324668
- Miwa T., Kemoto N., 10.1016/0166-8641(93)90057-K, Topology Appl. 54 (1993), no. 1–3, 133–140. MR1255783DOI10.1016/0166-8641(93)90057-K