Robust recursive estimation of GARCH models

Tomáš Cipra; Radek Hendrych

Kybernetika (2018)

  • Volume: 54, Issue: 6, page 1138-1155
  • ISSN: 0023-5954

Abstract

top
The robust recursive algorithm for the parameter estimation and the volatility prediction in GARCH models is suggested. It seems to be useful for various financial time series, in particular for (high-frequency) log returns contaminated by additive outliers. The proposed procedure can be effective in the risk control and regulation when the prediction of volatility is the main concern since it is capable to distinguish and correct outlaid bursts of volatility. This conclusion is demonstrated by simulations and real data examples presented in the paper.

How to cite

top

Cipra, Tomáš, and Hendrych, Radek. "Robust recursive estimation of GARCH models." Kybernetika 54.6 (2018): 1138-1155. <http://eudml.org/doc/294821>.

@article{Cipra2018,
abstract = {The robust recursive algorithm for the parameter estimation and the volatility prediction in GARCH models is suggested. It seems to be useful for various financial time series, in particular for (high-frequency) log returns contaminated by additive outliers. The proposed procedure can be effective in the risk control and regulation when the prediction of volatility is the main concern since it is capable to distinguish and correct outlaid bursts of volatility. This conclusion is demonstrated by simulations and real data examples presented in the paper.},
author = {Cipra, Tomáš, Hendrych, Radek},
journal = {Kybernetika},
keywords = {GARCH model; Kalman filter; outlier; robust recursive estimation; volatility},
language = {eng},
number = {6},
pages = {1138-1155},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust recursive estimation of GARCH models},
url = {http://eudml.org/doc/294821},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Cipra, Tomáš
AU - Hendrych, Radek
TI - Robust recursive estimation of GARCH models
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 6
SP - 1138
EP - 1155
AB - The robust recursive algorithm for the parameter estimation and the volatility prediction in GARCH models is suggested. It seems to be useful for various financial time series, in particular for (high-frequency) log returns contaminated by additive outliers. The proposed procedure can be effective in the risk control and regulation when the prediction of volatility is the main concern since it is capable to distinguish and correct outlaid bursts of volatility. This conclusion is demonstrated by simulations and real data examples presented in the paper.
LA - eng
KW - GARCH model; Kalman filter; outlier; robust recursive estimation; volatility
UR - http://eudml.org/doc/294821
ER -

References

top
  1. Aknouche, A., Guerbyenne, H., 10.1080/03610910600880328, Comm. Statist. Simul. Comput. 35 (2006), 925-938. MR2291371DOI10.1080/03610910600880328
  2. Balke, N. S., Fomby, T. B., 10.1002/jae.3950090205, J. Appl. Econometr. 31 (1994), 307-327. DOI10.1002/jae.3950090205
  3. Bernholt, T., Fried, R., Gather, U., Wegener, I., 10.1007/s11222-006-8449-1, Statist. Comput. 16 (2006), 177-192. MR2227394DOI10.1007/s11222-006-8449-1
  4. Bollerslev, T., 10.1016/0304-4076(86)90063-1, J. Econometr. 31 (1986), 307-327. MR0853051DOI10.1016/0304-4076(86)90063-1
  5. Bose, A., Mukherjee, K., 10.1111/1467-9892.00296, J. Time Series Anal. 24 (2003), 127-136. MR1965808DOI10.1111/1467-9892.00296
  6. Calvet, L. E., Czellar, V., Ronchetti, E., 10.1080/01621459.2014.983520, J. Amer. Statist. Assoc. 110 (2015), 1591-1606. MR3449057DOI10.1080/01621459.2014.983520
  7. Carnero, M. A., Peña, D., Ruiz, E., 10.1111/j.1467-9892.2006.00519.x, J. Time Series Anal. 28 (2007), 471-497. MR2396627DOI10.1111/j.1467-9892.2006.00519.x
  8. Carnero, M. A., Peña, D., Ruiz, E., 10.1016/j.econlet.2011.09.023, Econom. Lett. 114 (2012), 86-90. MR2879552DOI10.1016/j.econlet.2011.09.023
  9. Charles, A., 10.1002/for.1065, J. Forecast. 27 (2008), 551-565. MR2588565DOI10.1002/for.1065
  10. Charles, A., Darné, O., 10.1016/j.econlet.2004.07.019, Econom. Lett. 86 (2005), 347-352. MR2124418DOI10.1016/j.econlet.2004.07.019
  11. Cipra, T., 10.1002/for.3980110106, J. Forecast. 11 (1992), 57-69. DOI10.1002/for.3980110106
  12. Cipra, T., 10.1080/03610929808832146, Comm. Statist. Theory Methods 27 (1998), 1071-1082. MR1626293DOI10.1080/03610929808832146
  13. Cipra, T., Hanzák, T., Exponential smoothing for time series with outliers., Kybernetika 47 (2011), 165-178. MR2828571
  14. Cipra, T., Romera, R., Robust Kalman filter and its applications in time series analysis., Kybernetika 27 (1991), 481-494. MR1150938
  15. Crevits, R., Croux, C., 10.13140/RG.2.2.11791.18080), Working paper KBI_1714, KU Leuven, Leuven 2016 (DOI:10.13140/RG.2.2.11791.18080). DOI10.13140/RG.2.2.11791.18080)
  16. Croux, C., Gelper, S., 10.1007/s10492-008-0002-4, Appl. Math. 53 (2008), 163-176. MR2411122DOI10.1007/s10492-008-0002-4
  17. Croux, C., Gelper, S. E. C., Mahieu, K., 10.1016/j.csda.2009.05.003, Comput. Statist. Data Anal. 54 (2010), 2999-3006. MR2727729DOI10.1016/j.csda.2009.05.003
  18. Dalhaus, R., Rao, S. S., 10.3150/07-bej5009, Bernoulli 13 (2007), 389-422. MR2331257DOI10.3150/07-bej5009
  19. Engle, R. F., 10.2307/1912773, Econometrica 50 (1982), 987-1007. MR0666121DOI10.2307/1912773
  20. Eraker, B., Johannes, M., Polson, N., 10.1111/1540-6261.00566, J. Finance 58 (2003), 1269-1300. DOI10.1111/1540-6261.00566
  21. Fasso, A., Recursive least squares with ARCH errors and nonparametric modelling of environmental time series., Working Paper 6, University of Bergamo 2009. 
  22. Franke, J., Härdle, W. K., Hafner, C. M., 10.1007/978-3-642-16521-4, Springer, Berlin 2011. MR2722946DOI10.1007/978-3-642-16521-4
  23. Franses, P. H., Ghijsels, H., 10.1016/s0169-2070(98)00053-3, Int. J. Forecast. 15 (1999), 1-9. DOI10.1016/s0169-2070(98)00053-3
  24. Galeano, P., Peña, D., 10.1007/978-3-642-35494-6_15, In: Robustness and Complex Data Structures (C. Becker, R. Fried, S. Kuhnt, eds.), Springer, Berlin 2013, pp. 243-260. MR3135884DOI10.1007/978-3-642-35494-6_15
  25. Gelper, S., Fried, R., Croux, C., 10.1002/for.1125, J. Forecast. 29 (2009), 285-300. Zbl1203.62164MR2752114DOI10.1002/for.1125
  26. Gerencsér, L., Orlovits, Z., Torma, B., Recursive estimation of GARCH processes., In: Proc. 19th International Symposium on Mathematical Theory and Systems - MTNS (A. Edelmayer, ed.), Eötvös Loránd University, Budapest 2010, pp. 2415-2422. 
  27. Grané, A., Veiga, H., 10.1016/j.csda.2009.12.010, Comput. Statist. Data Anal. 54 (2010), 2580-2593. MR2720462DOI10.1016/j.csda.2009.12.010
  28. Gregory, A. V., Reeves, J. J., 10.1093/jjfinec/nbq028, J. Financ. Econometr. 8 (2010), 547-569. DOI10.1093/jjfinec/nbq028
  29. Grillenzoni, C., 10.1007/bf03178900, J. Ital. Statist. Soc. 6 (1997), 37-58. DOI10.1007/bf03178900
  30. Grillenzoni, C., 10.2307/1270909, Technometrics 39 (1997), 211-224. DOI10.2307/1270909
  31. Hendrych, R., Cipra, T., 10.3311/ppee.9684, In: Proc. 33rd International Conference Mathematical Methods in Economics (D. Martinčák, J. Ircingová, and P. Janeček, eds.). University of West Bohemia, Pilsen 2014, pp. 237-242. DOI10.3311/ppee.9684
  32. Hendrych, R., Cipra, T., 10.1080/03610918.2015.1053924, Comm. Statist. Simul. Comput. 47 (2018), 315-328. MR3757688DOI10.1080/03610918.2015.1053924
  33. Hill, J. B., 10.3150/14-bej616, Bernoulli 21 (2015), 1629-1669. MR3352056DOI10.3150/14-bej616
  34. Hotta, L. K., Tsay, R. S., 10.1201/b11823-20, In: Economic time series: Modeling and seasonality (W. R. Bell, S. H. Holan, and T. S. McElroy, eds.). CRC Press, Boca Raton 2012, pp. 337-358. MR3076022DOI10.1201/b11823-20
  35. Hyndman, R. J., Koehler, A. B., Ord, J. K., Snyder, R. D., 10.1111/j.1751-5823.2009.00085_17.x, Springer, Berlin 2008. DOI10.1111/j.1751-5823.2009.00085_17.x
  36. Jiang, J., Zhao, Q., Hui, Y. V., 10.1002/1099-131x(200103)20:2<111::aid-for786>3.0.co;2-n, J. Forecast. 20 (2001), 111-133. DOI10.1002/1099-131x(200103)20:2<111::aid-for786>3.0.co;2-n
  37. Kierkegaard, J., Nielsen, J., Jensen, L., Madsen, H., Estimating GARCH models using recursive methods. 
  38. Koch, K. R., Yang, Y., 10.1007/s001900050183, J. Geodesy 72 (1998), 436-441. DOI10.1007/s001900050183
  39. Lanius, V., Gather, U., 10.1016/j.csda.2009.10.009, Comput. Statist. Data Anal. 54 (2010), 966-975. MR2580931DOI10.1016/j.csda.2009.10.009
  40. Ling, S., 10.1016/j.jeconom.2006.07.016, J. Econometr. 140 (2007), 849-873. MR2408929DOI10.1016/j.jeconom.2006.07.016
  41. Ljung, L., System Identification: Theory for the User., Prentice Hall PTR, Upper Saddle River 1999. 
  42. Ljung, L., Söderström, T. S., Theory and Practice of Recursive Identification., MIT Press, Cambridge 1983. MR0719192
  43. Michálek, J., Robust methods in exponential smoothing., Kybernetika 32 (1996), 289-306. MR1438221
  44. Muler, N., Yohai, V., 10.1016/j.jspi.2007.11.003, J. Statist. Planning Inference 138 (2008), 2918-2940. MR2442223DOI10.1016/j.jspi.2007.11.003
  45. Park, B.-J., 10.1002/for.827, J. Forecast. 21 (2002), 381-393. DOI10.1002/for.827
  46. Peng, L., Yao, Q., 10.1093/biomet/90.4.967, Biometrika 90 (2003), 967-975. MR2024770DOI10.1093/biomet/90.4.967
  47. Romera, R., Cipra, T., 10.1080/03610919508813252, Comm. Statist. Simul. Comput. 24 (1995), 461-488. Zbl0850.62688MR1333047DOI10.1080/03610919508813252
  48. Ruckdeschel, P., Spangl, B., Pupashenko, D., 10.1007/s00362-012-0496-4, Statist. Papers 55 (2014), 93-123. MR3152769DOI10.1007/s00362-012-0496-4
  49. Sakata, S., White, H., 10.2307/2998574, Econometrica 66 (1998), 529-567. DOI10.2307/2998574
  50. Shaolin, H. U., Meinke, K., Ouyang, H., Guoji, S., 10.14569/ijacsa.2011.021206, Int. J. Advanced Computer Sci. Appl. 2 (2011), 37-41. DOI10.14569/ijacsa.2011.021206
  51. Söderström, T. S., Stoica, P., System Identification., Prentice Hall, New York 1989. 
  52. Tsay, R. S., Analysis of Financial Time Series., Wiley, Hoboken 2013. MR2778591
  53. Yang, Y., 10.14569/ijacsa.2011.021206, In: Sciences of Geodesy (G. Xu, ed.), Springer, Berlin 2010, pp. 49-82. DOI10.14569/ijacsa.2011.021206
  54. Yang, Y., Gao, W., Zhang, X., 10.1007/s00190-010-0374-6, J. Geodesy 84 (2010), 373-381. DOI10.1007/s00190-010-0374-6
  55. Zhang, R., Ling, S., 10.1017/s0266466614000632, Econometr. Theory 31 (2015), 880-890. MR3377272DOI10.1017/s0266466614000632
  56. Zhu, K., Li, W. K., 10.1080/07350015.2014.977446, J. Business Econom. Statist. 33 (2015), 552-565. MR3416600DOI10.1080/07350015.2014.977446
  57. Zhu, K., Ling, S., 10.1214/11-aos895, Ann. Statist. 39 (2011), 2131-2163. MR2893864DOI10.1214/11-aos895
  58. Zhu, K., Ling, S., 10.1080/01621459.2014.977386, J. Amer. Statist. Assoc. 110 (2015), 784-794. MR3367264DOI10.1080/01621459.2014.977386

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.