On the cardinality of Urysohn spaces and weakly H -closed spaces

Fortunata Aurora Basile; Nathan Carlson

Mathematica Bohemica (2019)

  • Volume: 144, Issue: 3, page 325-336
  • ISSN: 0862-7959

Abstract

top
We introduce the cardinal invariant θ - a L ' ( X ) , related to θ - a L ( X ) , and show that if X is Urysohn, then | X | 2 θ - a L ' ( X ) χ ( X ) . As θ - a L ' ( X ) a L ( X ) , this represents an improvement of the Bella-Cammaroto inequality. We also introduce the classes of firmly Urysohn spaces, related to Urysohn spaces, strongly semiregular spaces, related to semiregular spaces, and weakly H -closed spaces, related to H -closed spaces.

How to cite

top

Basile, Fortunata Aurora, and Carlson, Nathan. "On the cardinality of Urysohn spaces and weakly $H$-closed spaces." Mathematica Bohemica 144.3 (2019): 325-336. <http://eudml.org/doc/294829>.

@article{Basile2019,
abstract = {We introduce the cardinal invariant $\theta $-$aL^\{\prime \}(X)$, related to $\theta $-$aL(X)$, and show that if $X$ is Urysohn, then $|X|\le 2^\{\theta \text\{-\}aL^\{\prime \}(X)\chi (X)\}$. As $\theta $-$aL^\{\prime \}(X)\le aL(X)$, this represents an improvement of the Bella-Cammaroto inequality. We also introduce the classes of firmly Urysohn spaces, related to Urysohn spaces, strongly semiregular spaces, related to semiregular spaces, and weakly $H$-closed spaces, related to $H$-closed spaces.},
author = {Basile, Fortunata Aurora, Carlson, Nathan},
journal = {Mathematica Bohemica},
keywords = {Urysohn space; $\theta $-closure; pseudocharacter; almost Lindelöf degree; cardinality; cardinal invariant},
language = {eng},
number = {3},
pages = {325-336},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the cardinality of Urysohn spaces and weakly $H$-closed spaces},
url = {http://eudml.org/doc/294829},
volume = {144},
year = {2019},
}

TY - JOUR
AU - Basile, Fortunata Aurora
AU - Carlson, Nathan
TI - On the cardinality of Urysohn spaces and weakly $H$-closed spaces
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 3
SP - 325
EP - 336
AB - We introduce the cardinal invariant $\theta $-$aL^{\prime }(X)$, related to $\theta $-$aL(X)$, and show that if $X$ is Urysohn, then $|X|\le 2^{\theta \text{-}aL^{\prime }(X)\chi (X)}$. As $\theta $-$aL^{\prime }(X)\le aL(X)$, this represents an improvement of the Bella-Cammaroto inequality. We also introduce the classes of firmly Urysohn spaces, related to Urysohn spaces, strongly semiregular spaces, related to semiregular spaces, and weakly $H$-closed spaces, related to $H$-closed spaces.
LA - eng
KW - Urysohn space; $\theta $-closure; pseudocharacter; almost Lindelöf degree; cardinality; cardinal invariant
UR - http://eudml.org/doc/294829
ER -

References

top
  1. Alas, O. T., Kočinac, L. D., More cardinal inequalities on Urysohn spaces, Math. Balk., New Ser. 14 (2000), 247-251. (2000) Zbl1043.54500MR1891143
  2. Basile, F. A., Bonanzinga, M., Carlson, N., 10.1016/j.topol.2018.03.005, Topology Appl. 240 (2018), 228-237. (2018) Zbl1388.54004MR3784407DOI10.1016/j.topol.2018.03.005
  3. Bell, M., Ginsburg, J., Woods, G., 10.2140/pjm.1978.79.37, Pac. J. Math. 79 (1979), 37-45. (1979) Zbl0367.54003MR0526665DOI10.2140/pjm.1978.79.37
  4. Bella, A., Cammaroto, F., 10.4153/CMB-1988-023-4, Can. Math. Bull. 31 (1988), 153-158. (1988) Zbl0646.54005MR0942065DOI10.4153/CMB-1988-023-4
  5. Cammaroto, F., Catalioto, A., Pansera, B. A., Tsaban, B., 10.1016/j.topol.2013.07.031, Topology Appl. 160 (2013), 2371-2378. (2013) Zbl1284.54011MR3120651DOI10.1016/j.topol.2013.07.031
  6. Cammaroto, F., Kočinac, L., On θ -tightness, Facta Univ., Ser. Math. Inf. 8 (1993), 77-85. (1993) Zbl0823.54002MR1340985
  7. Carlson, N. A., Porter, J. R., 10.1016/j.topol.2017.01.027, Topology Appl. 241 (2018), 377-395. (2018) Zbl06894012MR3794175DOI10.1016/j.topol.2017.01.027
  8. Engelking, R., General Topology, Wydawnictwo Naukowe PWN, Warsaw Polish (2007). (2007) Zbl1281.54001MR0500779
  9. Hodel, R. E., 10.1016/j.topol.2005.04.011, Topology Appl. 153 (2006), 2199-2217. (2006) Zbl1099.54001MR2238725DOI10.1016/j.topol.2005.04.011
  10. Kočinac, L. D., On the cardinality of Urysohn and H -closed spaces, Proc. Math. Conf., Priština, 1994 Univ. of Priština, Faculty of Sciences, Priština (1995), L. D. Kočinac 105-111. (1995) Zbl0877.54002MR1466279
  11. Kočinac, L. D., On the cardinality of Urysohn spaces, Questions and Answers in General Topology 13 (1995), 211-216. (1995) Zbl0838.54002MR1350238
  12. Porter, J. R., Woods, R. G., 10.1007/978-1-4612-3712-9, Springer, New York (1988). (1988) Zbl0652.54016MR0918341DOI10.1007/978-1-4612-3712-9
  13. Veličko, N. V., 10.1090/trans2/078/05, Am. Math. Soc., Transl., II. Ser. 78 (1968), 103-118 translated from Mat. Sb., n. Ser. 70 1966 98-112. (1968) Zbl0183.27302MR0198418DOI10.1090/trans2/078/05
  14. Willard, S., Dissanayake, U. N. B., 10.4153/CMB-1984-070-2, Can. Math. Bull. 27 (1984), 452-455. (1984) Zbl0551.54003MR0763044DOI10.4153/CMB-1984-070-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.