Alternate checking criteria for reachable controllability of rectangular descriptor systems
Vikas Kumar Mishra; Nutan Kumar Tomar
Kybernetika (2017)
- Volume: 53, Issue: 5, page 820-837
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMishra, Vikas Kumar, and Tomar, Nutan Kumar. "Alternate checking criteria for reachable controllability of rectangular descriptor systems." Kybernetika 53.5 (2017): 820-837. <http://eudml.org/doc/294835>.
@article{Mishra2017,
abstract = {Contrary to state space systems, there are different notions of controllability for linear time invariant descriptor systems due to the non smooth inputs and inconsistent initial conditions. A comprehensive study of different notions of controllability for linear descriptor systems is performed. Also, it is proved that reachable controllability for general linear time invariant descriptor system is equivalent to the controllability of some matrix pair under an assumption milder than impulse controllability. The whole theory has been developed by coining two new decompositions for system matrices. Examples are given to illustrate the presented theory.},
author = {Mishra, Vikas Kumar, Tomar, Nutan Kumar},
journal = {Kybernetika},
keywords = {descriptor systems; controllability; reachable controllability},
language = {eng},
number = {5},
pages = {820-837},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Alternate checking criteria for reachable controllability of rectangular descriptor systems},
url = {http://eudml.org/doc/294835},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Mishra, Vikas Kumar
AU - Tomar, Nutan Kumar
TI - Alternate checking criteria for reachable controllability of rectangular descriptor systems
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 5
SP - 820
EP - 837
AB - Contrary to state space systems, there are different notions of controllability for linear time invariant descriptor systems due to the non smooth inputs and inconsistent initial conditions. A comprehensive study of different notions of controllability for linear descriptor systems is performed. Also, it is proved that reachable controllability for general linear time invariant descriptor system is equivalent to the controllability of some matrix pair under an assumption milder than impulse controllability. The whole theory has been developed by coining two new decompositions for system matrices. Examples are given to illustrate the presented theory.
LA - eng
KW - descriptor systems; controllability; reachable controllability
UR - http://eudml.org/doc/294835
ER -
References
top- Berger, T., Reis, T., 10.1007/978-3-642-34928-7_1, In: Surveys in Differential-Algebraic Equations I, Differential-Algebraic Equations Forum, (A. Ilchman and T. Reis, eds.), Springer-Verlag, Berlin, Heildelberg 2013, pp. 1-61. MR3076031DOI10.1007/978-3-642-34928-7_1
- Berger, T., Trenn, S., 10.1016/j.sysconle.2014.06.004, Syst. Control Lett. 71 (2014), 54-61. MR3250381DOI10.1016/j.sysconle.2014.06.004
- Bernstein, D. S., Matrix Mathematics: Theory, Facts, And Formulas With Application To Linear Systems Theory., Princeton University Press 41, Princeton 2005. MR2123424
- Bunse-Gerstner, A., Byers, R., Mehrmann, V., Nichols, N. K., 10.1016/s0024-3795(99)00167-6, Linear Algebra Appl. 299 (1999), 119-151. MR1723712DOI10.1016/s0024-3795(99)00167-6
- Campbell, S., Singular Systems Of Differential Equations., Pitman 40, San Francisco 1980. MR0569589
- Campbell, S., Singular Systems Of Differential Equations II., Pitman 61, San Francisco 1982. MR0665426
- Campbell, S. L., Kunkel, P., Mehrmann, V., 10.1137/9781611972252.ch2, In: Control and Optimization with Differential-Algebraic Constraints, Advances in Design and Control 2012, pp. 17-36. MR2905713DOI10.1137/9781611972252.ch2
- Chen, C.-T., Linear System Theory And Design., Oxford University Press, Inc. 1995.
- Christodoulou, M., Paraskevopoulos, P., 10.1007/bf00940813, J. Optim. Theory Appl. 45 (1985), 53-72. MR0778157DOI10.1007/bf00940813
- Chua, L. O., Desoer, C. A., Kuh, E. S., Linear and Nonlinear Circuits., McGraw-Hill, New York 1987. MR0356971
- Cobb, D., 10.1109/tac.1984.1103451, IEEE Trans. Automat. Control 29 (1984), 1076-1082. MR0771396DOI10.1109/tac.1984.1103451
- Dai, L., 10.1007/bf01599765, Circuits Syst. Signal Process. 8 (1989), 435-444. MR1027908DOI10.1007/bf01599765
- Dai, L., 10.1007/bfb0002475, Springer Verlag, Lecture Notes in Control and Information Sciences, Berlin 1989. MR0986970DOI10.1007/bfb0002475
- Duan, G.-R., Analysis and Design Of Descriptor Linear Systems., Springer 10, Berlin 2010. MR2723074
- Duan, G.-R., Nichols, N. K., Liu, G.-P., 10.3166/ejc.8.136-149, Eur. J. Control 8 (2002), 136-149. DOI10.3166/ejc.8.136-149
- Gantmacher, F. R., The Theory of Matrices: Vol. 2., Chelsea Publishing Company, New York 1959. MR0107649
- Geerts, T., 10.1016/0024-3795(93)90027-l, Linear Algebra Appl. 181 (1993), 111-130. MR1204345DOI10.1016/0024-3795(93)90027-l
- Golub, G. H., Loan, C. F. Van, Matrix Computations. Third edition., Johns Hopkins University Press, Baltimore, London 1996. MR1417720
- Hautus, M., 10.1016/s1385-7258(70)80049-x, In: Proc. Indagationes Mathematicae 73, Elsevier 1970, pp. 448-455. MR0289170DOI10.1016/s1385-7258(70)80049-x
- Hou, M., 10.1016/s1385-7258(70)80049-x, IEEE Trans. Automat. Control 49 (2004), 1723-1729. MR2091322DOI10.1016/s1385-7258(70)80049-x
- Ishihara, J. Y., Terra, M. H., 10.1109/9.928613, IEEE Trans. Automat. Control 46 (2001), 991-994. Zbl1007.93006MR1836508DOI10.1109/9.928613
- Karampetakis, N., Jones, J., Antoniou, E., 10.1007/bf01204924, Circuits Syst. Signal Process. 20 (2001), 89-109. MR1820533DOI10.1007/bf01204924
- Kumar, A., Daoutidis, P., Control of Nonlinear Differential Algebraic Equation Systems with Applications to Chemical Processes MR1681229
- Kunkel, P., Mehrmann, V. .L., 10.4171/017, Europ. Math. Society, Zürich 2006. MR2225970DOI10.4171/017
- Mishra, V. K., Tomar, N. K., 10.1007/s00034-015-0111-8, Circuits Syst. Signal Process. 35 (2016), 1395-1406. MR3465880DOI10.1007/s00034-015-0111-8
- Mishra, V. K., Tomar, N. K., Gupta, M. K., 10.1007/s40313-015-0218-y, J. Control Automat. Electr. Syst. 27 (2016), 19-28. DOI10.1007/s40313-015-0218-y
- Piziak, R., Odell, P. L., Matrix Theory: From Generalized Inverses to Jordan Form., CRC Press 2007. MR2292386
- Stefanovski, J., Transformation of optimal control problems of descriptor systems into problems with state-space systems., Kybernetika 48 (2012), 1156-1179. MR3052879
- Verghese, G. C., Levy, B. C., Kailath, T., 10.1109/tac.1981.1102763, IEEE Trans. Automat. Control 26 (1981), 811-831. MR0635842DOI10.1109/tac.1981.1102763
- Yip, E., Sincovec, R., 10.1109/tac.1981.1102699, IEEE Trans. Automat. Control 26 (1981), 702-707. MR0630799DOI10.1109/tac.1981.1102699
- Zhang, Q., Liu, C., Zhang, X., Complexity, Analysis and Control of Singular Biological Systems MR3014673
- Zubova, S. P., 10.1134/s0005117911010036, Automat. Remote Control 72 (2011), 23-37. MR2808551DOI10.1134/s0005117911010036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.