Alternate checking criteria for reachable controllability of rectangular descriptor systems

Vikas Kumar Mishra; Nutan Kumar Tomar

Kybernetika (2017)

  • Volume: 53, Issue: 5, page 820-837
  • ISSN: 0023-5954

Abstract

top
Contrary to state space systems, there are different notions of controllability for linear time invariant descriptor systems due to the non smooth inputs and inconsistent initial conditions. A comprehensive study of different notions of controllability for linear descriptor systems is performed. Also, it is proved that reachable controllability for general linear time invariant descriptor system is equivalent to the controllability of some matrix pair under an assumption milder than impulse controllability. The whole theory has been developed by coining two new decompositions for system matrices. Examples are given to illustrate the presented theory.

How to cite

top

Mishra, Vikas Kumar, and Tomar, Nutan Kumar. "Alternate checking criteria for reachable controllability of rectangular descriptor systems." Kybernetika 53.5 (2017): 820-837. <http://eudml.org/doc/294835>.

@article{Mishra2017,
abstract = {Contrary to state space systems, there are different notions of controllability for linear time invariant descriptor systems due to the non smooth inputs and inconsistent initial conditions. A comprehensive study of different notions of controllability for linear descriptor systems is performed. Also, it is proved that reachable controllability for general linear time invariant descriptor system is equivalent to the controllability of some matrix pair under an assumption milder than impulse controllability. The whole theory has been developed by coining two new decompositions for system matrices. Examples are given to illustrate the presented theory.},
author = {Mishra, Vikas Kumar, Tomar, Nutan Kumar},
journal = {Kybernetika},
keywords = {descriptor systems; controllability; reachable controllability},
language = {eng},
number = {5},
pages = {820-837},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Alternate checking criteria for reachable controllability of rectangular descriptor systems},
url = {http://eudml.org/doc/294835},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Mishra, Vikas Kumar
AU - Tomar, Nutan Kumar
TI - Alternate checking criteria for reachable controllability of rectangular descriptor systems
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 5
SP - 820
EP - 837
AB - Contrary to state space systems, there are different notions of controllability for linear time invariant descriptor systems due to the non smooth inputs and inconsistent initial conditions. A comprehensive study of different notions of controllability for linear descriptor systems is performed. Also, it is proved that reachable controllability for general linear time invariant descriptor system is equivalent to the controllability of some matrix pair under an assumption milder than impulse controllability. The whole theory has been developed by coining two new decompositions for system matrices. Examples are given to illustrate the presented theory.
LA - eng
KW - descriptor systems; controllability; reachable controllability
UR - http://eudml.org/doc/294835
ER -

References

top
  1. Berger, T., Reis, T., 10.1007/978-3-642-34928-7_1, In: Surveys in Differential-Algebraic Equations I, Differential-Algebraic Equations Forum, (A. Ilchman and T. Reis, eds.), Springer-Verlag, Berlin, Heildelberg 2013, pp. 1-61. MR3076031DOI10.1007/978-3-642-34928-7_1
  2. Berger, T., Trenn, S., 10.1016/j.sysconle.2014.06.004, Syst. Control Lett. 71 (2014), 54-61. MR3250381DOI10.1016/j.sysconle.2014.06.004
  3. Bernstein, D. S., Matrix Mathematics: Theory, Facts, And Formulas With Application To Linear Systems Theory., Princeton University Press 41, Princeton 2005. MR2123424
  4. Bunse-Gerstner, A., Byers, R., Mehrmann, V., Nichols, N. K., 10.1016/s0024-3795(99)00167-6, Linear Algebra Appl. 299 (1999), 119-151. MR1723712DOI10.1016/s0024-3795(99)00167-6
  5. Campbell, S., Singular Systems Of Differential Equations., Pitman 40, San Francisco 1980. MR0569589
  6. Campbell, S., Singular Systems Of Differential Equations II., Pitman 61, San Francisco 1982. MR0665426
  7. Campbell, S. L., Kunkel, P., Mehrmann, V., 10.1137/9781611972252.ch2, In: Control and Optimization with Differential-Algebraic Constraints, Advances in Design and Control 2012, pp. 17-36. MR2905713DOI10.1137/9781611972252.ch2
  8. Chen, C.-T., Linear System Theory And Design., Oxford University Press, Inc. 1995. 
  9. Christodoulou, M., Paraskevopoulos, P., 10.1007/bf00940813, J. Optim. Theory Appl. 45 (1985), 53-72. MR0778157DOI10.1007/bf00940813
  10. Chua, L. O., Desoer, C. A., Kuh, E. S., Linear and Nonlinear Circuits., McGraw-Hill, New York 1987. MR0356971
  11. Cobb, D., 10.1109/tac.1984.1103451, IEEE Trans. Automat. Control 29 (1984), 1076-1082. MR0771396DOI10.1109/tac.1984.1103451
  12. Dai, L., 10.1007/bf01599765, Circuits Syst. Signal Process. 8 (1989), 435-444. MR1027908DOI10.1007/bf01599765
  13. Dai, L., 10.1007/bfb0002475, Springer Verlag, Lecture Notes in Control and Information Sciences, Berlin 1989. MR0986970DOI10.1007/bfb0002475
  14. Duan, G.-R., Analysis and Design Of Descriptor Linear Systems., Springer 10, Berlin 2010. MR2723074
  15. Duan, G.-R., Nichols, N. K., Liu, G.-P., 10.3166/ejc.8.136-149, Eur. J. Control 8 (2002), 136-149. DOI10.3166/ejc.8.136-149
  16. Gantmacher, F. R., The Theory of Matrices: Vol. 2., Chelsea Publishing Company, New York 1959. MR0107649
  17. Geerts, T., 10.1016/0024-3795(93)90027-l, Linear Algebra Appl. 181 (1993), 111-130. MR1204345DOI10.1016/0024-3795(93)90027-l
  18. Golub, G. H., Loan, C. F. Van, Matrix Computations. Third edition., Johns Hopkins University Press, Baltimore, London 1996. MR1417720
  19. Hautus, M., 10.1016/s1385-7258(70)80049-x, In: Proc. Indagationes Mathematicae 73, Elsevier 1970, pp. 448-455. MR0289170DOI10.1016/s1385-7258(70)80049-x
  20. Hou, M., 10.1016/s1385-7258(70)80049-x, IEEE Trans. Automat. Control 49 (2004), 1723-1729. MR2091322DOI10.1016/s1385-7258(70)80049-x
  21. Ishihara, J. Y., Terra, M. H., 10.1109/9.928613, IEEE Trans. Automat. Control 46 (2001), 991-994. Zbl1007.93006MR1836508DOI10.1109/9.928613
  22. Karampetakis, N., Jones, J., Antoniou, E., 10.1007/bf01204924, Circuits Syst. Signal Process. 20 (2001), 89-109. MR1820533DOI10.1007/bf01204924
  23. Kumar, A., Daoutidis, P., Control of Nonlinear Differential Algebraic Equation Systems with Applications to Chemical Processes MR1681229
  24. Kunkel, P., Mehrmann, V. .L., 10.4171/017, Europ. Math. Society, Zürich 2006. MR2225970DOI10.4171/017
  25. Mishra, V. K., Tomar, N. K., 10.1007/s00034-015-0111-8, Circuits Syst. Signal Process. 35 (2016), 1395-1406. MR3465880DOI10.1007/s00034-015-0111-8
  26. Mishra, V. K., Tomar, N. K., Gupta, M. K., 10.1007/s40313-015-0218-y, J. Control Automat. Electr. Syst. 27 (2016), 19-28. DOI10.1007/s40313-015-0218-y
  27. Piziak, R., Odell, P. L., Matrix Theory: From Generalized Inverses to Jordan Form., CRC Press 2007. MR2292386
  28. Stefanovski, J., Transformation of optimal control problems of descriptor systems into problems with state-space systems., Kybernetika 48 (2012), 1156-1179. MR3052879
  29. Verghese, G. C., Levy, B. C., Kailath, T., 10.1109/tac.1981.1102763, IEEE Trans. Automat. Control 26 (1981), 811-831. MR0635842DOI10.1109/tac.1981.1102763
  30. Yip, E., Sincovec, R., 10.1109/tac.1981.1102699, IEEE Trans. Automat. Control 26 (1981), 702-707. MR0630799DOI10.1109/tac.1981.1102699
  31. Zhang, Q., Liu, C., Zhang, X., Complexity, Analysis and Control of Singular Biological Systems MR3014673
  32. Zubova, S. P., 10.1134/s0005117911010036, Automat. Remote Control 72 (2011), 23-37. MR2808551DOI10.1134/s0005117911010036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.