A homogeneity test of large dimensional covariance matrices under non-normality
Kybernetika (2018)
- Volume: 54, Issue: 5, page 908-920
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topAhmad, M. Rauf. "A homogeneity test of large dimensional covariance matrices under non-normality." Kybernetika 54.5 (2018): 908-920. <http://eudml.org/doc/294840>.
@article{Ahmad2018,
abstract = {A test statistic for homogeneity of two or more covariance matrices is presented when the distributions may be non-normal and the dimension may exceed the sample size. Using the Frobenius norm of the difference of null and alternative hypotheses, the statistic is constructed as a linear combination of consistent, location-invariant, estimators of trace functions that constitute the norm. These estimators are defined as $U$-statistics and the corresponding theory is exploited to derive the normal limit of the statistic under a few mild assumptions as both sample size and dimension grow large. Simulations are used to assess the accuracy of the statistic.},
author = {Ahmad, M. Rauf},
journal = {Kybernetika},
keywords = {high-dimensional inference; covariance testing; $U$-statistics; non-normality},
language = {eng},
number = {5},
pages = {908-920},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A homogeneity test of large dimensional covariance matrices under non-normality},
url = {http://eudml.org/doc/294840},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Ahmad, M. Rauf
TI - A homogeneity test of large dimensional covariance matrices under non-normality
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 5
SP - 908
EP - 920
AB - A test statistic for homogeneity of two or more covariance matrices is presented when the distributions may be non-normal and the dimension may exceed the sample size. Using the Frobenius norm of the difference of null and alternative hypotheses, the statistic is constructed as a linear combination of consistent, location-invariant, estimators of trace functions that constitute the norm. These estimators are defined as $U$-statistics and the corresponding theory is exploited to derive the normal limit of the statistic under a few mild assumptions as both sample size and dimension grow large. Simulations are used to assess the accuracy of the statistic.
LA - eng
KW - high-dimensional inference; covariance testing; $U$-statistics; non-normality
UR - http://eudml.org/doc/294840
ER -
References
top- Ahmad, M. R., 10.1111/sjos.12262, Scand. J. Stat. 44 (2017b), 500-523. MR3658524DOI10.1111/sjos.12262
- Ahmad, M. R., 10.1080/03610926.2015.1073310, Comm. Stat. Theory Methods 46 (2017a), 3738-3753. MR3590835DOI10.1080/03610926.2015.1073310
- Ahmad, M. R., 10.3103/s1066530716020034, Math. Meth. Stat. 25 (2016), 121-132. MR3519645DOI10.3103/s1066530716020034
- Anderson, T.W., An Introduction to Multivariate Statistical Analysis. Third edition., Wiley, NY 2003. MR1990662
- Aoshima, M., Yata, K., 10.1080/07474946.2011.619088, Seq. An. 30 (2011), 356-399. MR2855952DOI10.1080/07474946.2011.619088
- Cai, T., Liu, W., Xia, Y., 10.1080/01621459.2012.758041, J. Amer. Statist. Assoc. 108 (2013), 265-277. MR3174618DOI10.1080/01621459.2012.758041
- Fujikoshi, Y., Ulyanov, V. V., Shimizu, R., Multivariate statistics: High-dimensional and large-sample approximations., Wiley, NY 2010. MR2640807
- Hájek, J., Šidák, Z., Sen, P. K., Theory of Rank Tests., Academic Press, SD 1999. Zbl0944.62045MR1680991
- Kim, T. Y., Luo, Z-M., Kim, C., 10.1080/10485252.2011.556193, J. Nonparam. Stat. 23 (2011), 683-699. MR2836284DOI10.1080/10485252.2011.556193
- Koroljuk, V. S., Borovskich, Y. V., 10.1007/978-94-017-3515-5, Kluwer Academic Press, Dordrecht 1994. MR1472486DOI10.1007/978-94-017-3515-5
- Lee, A. J., -statistics: Theory and Practice., CRC Press, Boca Raton 1990.
- Lehmann, E. L., 10.1007/b98855, Springer, NY 1999. MR1663158DOI10.1007/b98855
- Li, J., Chen, S. X., 10.1214/12-aos993, Ann. Stat. 40 (2012), 908-940. MR2985938DOI10.1214/12-aos993
- Liu, B., Xu, L., Zheng, S., Tian, G-L., 10.1016/j.jmva.2014.06.008, J. Multiv. An. 131 (2014), 293-308. MR3252651DOI10.1016/j.jmva.2014.06.008
- Mikosch, T., 10.1007/bf02213365, J. Theoret. Prob. 7 (1991), 147-173. MR1256396DOI10.1007/bf02213365
- Mikosch, T., 10.1006/jmva.1993.1072, J. Multiv. An. 47 (1993), 82-102. MR1239107DOI10.1006/jmva.1993.1072
- Muirhead, R. J., 10.1002/9780470316559, Wiley, NY 2005 MR0652932DOI10.1002/9780470316559
- Pinheiro, A., Sen, K., Pinheiro, H. P., 10.1016/j.jmva.2009.01.007, J. Multiv. An. 100 (2009), 1645-1656. MR2535376DOI10.1016/j.jmva.2009.01.007
- Qiu, Y., Chen, S. X., 10.1214/12-aos1002, Ann. Stat. 40 (2012) 1285-1314. MR3015026DOI10.1214/12-aos1002
- Schott, J. R., 10.1016/j.csda.2007.03.004, Computat. Statist. Data Analysis 51 (2007), 6535-6542. MR2408613DOI10.1016/j.csda.2007.03.004
- Seber, G. A. F., 10.1002/9780470316641, Wiley, NY 2004. MR0746474DOI10.1002/9780470316641
- Sen, P. K., Robust statistical inference for high-dimensional data models with applications in genomics., Aust. J. Stat. 35 (2006), 197-214.
- Serfling, R. J., 10.1002/9780470316481, Wiley, Weinheim 1980. MR0595165DOI10.1002/9780470316481
- Srivastava, M. S., Yanagihara, H., 10.1016/j.jmva.2009.12.010, J. Multiv. An. 101, 1319-1329. MR2609494DOI10.1016/j.jmva.2009.12.010
- Vaart, A. W. van der, 10.1017/cbo9780511802256, Cambridge University Press, 1998. MR1652247DOI10.1017/cbo9780511802256
- Zhong, P-S., Chen, S. X., 10.1198/jasa.2011.tm10284, J. Amer. Statist. Assoc. 106 (2011), 260-274. MR2816719DOI10.1198/jasa.2011.tm10284
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.