Sums of multiplicative function in special arithmetic progressions

Bin Feng

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 1-10
  • ISSN: 0011-4642

Abstract

top
We find, via the Selberg-Delange method, an asymptotic formula for the mean of arithmetic functions on certain APs. It generalizes a result due to Cui and Wu (2014).

How to cite

top

Feng, Bin. "Sums of multiplicative function in special arithmetic progressions." Czechoslovak Mathematical Journal 69.1 (2019): 1-10. <http://eudml.org/doc/294844>.

@article{Feng2019,
abstract = {We find, via the Selberg-Delange method, an asymptotic formula for the mean of arithmetic functions on certain APs. It generalizes a result due to Cui and Wu (2014).},
author = {Feng, Bin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Selberg-Delange method; multiplicative function; arithmetic progressions},
language = {eng},
number = {1},
pages = {1-10},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sums of multiplicative function in special arithmetic progressions},
url = {http://eudml.org/doc/294844},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Feng, Bin
TI - Sums of multiplicative function in special arithmetic progressions
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 1
EP - 10
AB - We find, via the Selberg-Delange method, an asymptotic formula for the mean of arithmetic functions on certain APs. It generalizes a result due to Cui and Wu (2014).
LA - eng
KW - Selberg-Delange method; multiplicative function; arithmetic progressions
UR - http://eudml.org/doc/294844
ER -

References

top
  1. Cui, Z., Wu, J., 10.4064/aa163-3-4, Acta Arith. 163 (2014), 247-260. (2014) Zbl1303.11108MR3206395DOI10.4064/aa163-3-4
  2. Delange, H., Sur des formules dues à Atle Selberg, Bull. Sci. Math., II. Ser. 83 French (1959), 101-111. (1959) Zbl0106.03305MR0113836
  3. Delange, H., 10.4064/aa-19-2-105-146, Acta Arith. 19 French (1971), 105-146. (1971) Zbl0217.31902MR0289432DOI10.4064/aa-19-2-105-146
  4. Gallagher, P. X., 10.1007/BF01425492, Invent. Math. 16 (1972), 191-201. (1972) Zbl0246.10030MR0304327DOI10.1007/BF01425492
  5. Hanrot, G., Tenenbaum, G., Wu, J., 10.1112/plms/pdm029, Proc. Lond. Math. Soc. (3) 96 French (2008), 107-135. (2008) Zbl1195.11129MR2392317DOI10.1112/plms/pdm029
  6. Lau, Y.-K., 10.1007/s006050200032, Monatsh. Math. 136 (2002), 35-45. (2002) Zbl1012.11089MR1908079DOI10.1007/s006050200032
  7. Lau, Y.-K., Wu, J., 10.4064/aa101-4-5, Acta Arith. 101 (2002), 365-394. (2002) Zbl0991.11050MR1880049DOI10.4064/aa101-4-5
  8. Pan, C. D., Pan, C. B., Fundamentals of Analytic Number Theory, Science Press, Beijing (1991), Chinese. (1991) MR2954332
  9. Selberg, A., 10.18311/jims/1954/17018, J. Indian Math. Soc., N. Ser. 18 (1954), 83-87. (1954) Zbl0057.28502MR0067143DOI10.18311/jims/1954/17018
  10. Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Mathematics 46, Cambridge Univ. Press, Cambridge (1995). (1995) Zbl0831.11001MR1342300
  11. Tenenbaum, G., Wu, J., Théorie analytique et probabiliste des nombres: 307 exercices corrigés, Belin, Paris (2014), French. (2014) MR1397501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.