Artinianness of formal local cohomology modules

Shahram Rezaei

Commentationes Mathematicae Universitatis Carolinae (2019)

  • Volume: 60, Issue: 2, page 177-185
  • ISSN: 0010-2628

Abstract

top
Let 𝔞 be an ideal of Noetherian local ring ( R , 𝔪 ) and M a finitely generated R -module of dimension d . In this paper we investigate the Artinianness of formal local cohomology modules under certain conditions on the local cohomology modules with respect to 𝔪 . Also we prove that for an arbitrary local ring ( R , 𝔪 ) (not necessarily complete), we have Att R ( 𝔉 𝔞 d ( M ) ) = Min V ( Ann R 𝔉 𝔞 d ( M ) ) .

How to cite

top

Rezaei, Shahram. "Artinianness of formal local cohomology modules." Commentationes Mathematicae Universitatis Carolinae 60.2 (2019): 177-185. <http://eudml.org/doc/294855>.

@article{Rezaei2019,
abstract = {Let $\{\mathfrak \{a\}\}$ be an ideal of Noetherian local ring $(R,\{\mathfrak \{m\}\})$ and $M$ a finitely generated $R$-module of dimension $d$. In this paper we investigate the Artinianness of formal local cohomology modules under certain conditions on the local cohomology modules with respect to $\{\mathfrak \{m\}\}$. Also we prove that for an arbitrary local ring $(R,\{\mathfrak \{m\}\})$ (not necessarily complete), we have $\{\rm Att\}_R(\mathfrak \{F\}_\{\mathfrak \{a\}\}^d(M)) =\{\rm Min\} \{\rm V\}(\{\rm Ann\}_R \mathfrak \{F\}_\{\mathfrak \{a\}\}^d(M)).$},
author = {Rezaei, Shahram},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {formal local cohomology; local cohomology},
language = {eng},
number = {2},
pages = {177-185},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Artinianness of formal local cohomology modules},
url = {http://eudml.org/doc/294855},
volume = {60},
year = {2019},
}

TY - JOUR
AU - Rezaei, Shahram
TI - Artinianness of formal local cohomology modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 2
SP - 177
EP - 185
AB - Let ${\mathfrak {a}}$ be an ideal of Noetherian local ring $(R,{\mathfrak {m}})$ and $M$ a finitely generated $R$-module of dimension $d$. In this paper we investigate the Artinianness of formal local cohomology modules under certain conditions on the local cohomology modules with respect to ${\mathfrak {m}}$. Also we prove that for an arbitrary local ring $(R,{\mathfrak {m}})$ (not necessarily complete), we have ${\rm Att}_R(\mathfrak {F}_{\mathfrak {a}}^d(M)) ={\rm Min} {\rm V}({\rm Ann}_R \mathfrak {F}_{\mathfrak {a}}^d(M)).$
LA - eng
KW - formal local cohomology; local cohomology
UR - http://eudml.org/doc/294855
ER -

References

top
  1. Asgharzadeh M., Divaani-Aazar K., 10.1080/00927871003610312, Comm. Algebra 39 (2011), no. 3, 1082–1103. MR2810597DOI10.1080/00927871003610312
  2. Bijan-Zadeh M. H., Rezaei S., Artinianness and attached primes of formal local cohomology modules, Algebra Colloq. 21 (2014), no. 2, 307–316. MR3192350
  3. Brodmann M., Sharp R. Y., Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, 1998. MR1613627
  4. Eghbali M., 10.7146/math.scand.a-15478, Math. Scand. 113 (2013), no. 1, 5–19. MR3105540DOI10.7146/math.scand.a-15478
  5. MacDonald I. G., Secondary representations of modules over a commutative ring, Symposia Mathematica, Vol. XI, Convegno di Algebra Commutativa, INDAM, Rome, 1971, Academic Press, London, 1973, pages 23–43. MR0342506
  6. Macdonald I. G., Sharp R. Y., 10.1093/qmath/23.2.197, Quart. J. Math. Oxford Ser. (2) 23 (1972), 197–204. MR0299598DOI10.1093/qmath/23.2.197
  7. Melkersson L., Schenzel P., The co-localization of an Artinian module, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 1, 121–131. MR1317331
  8. Peskine C., Szpiro L., 10.1007/BF02685877, Inst. Hautes Études Sci. Publ. Math. No. 42 (1972), 47–119 (French). MR0374130DOI10.1007/BF02685877
  9. Rezaei S., 10.2996/kmj/1436403898, Kodai Math. J. 38 (2015), no. 2, 430–436. MR3368073DOI10.2996/kmj/1436403898
  10. Rezaei S., 10.1080/00927872.2016.1226867, Comm. Algebra 45 (2017), no. 5, 1935–1940. MR3582837DOI10.1080/00927872.2016.1226867
  11. Schenzel P., 10.1016/j.jalgebra.2007.06.015, J. Algebra 315 (2007), no. 2, 894–923. MR2351900DOI10.1016/j.jalgebra.2007.06.015
  12. Sharp R. Y., Some results on the vanishing of local cohomology modules, Proc. London Math. Soc. (3) 30 (1975), 177–195. MR0379474

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.