Artinianness of formal local cohomology modules
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 2, page 177-185
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topRezaei, Shahram. "Artinianness of formal local cohomology modules." Commentationes Mathematicae Universitatis Carolinae 60.2 (2019): 177-185. <http://eudml.org/doc/294855>.
@article{Rezaei2019,
abstract = {Let $\{\mathfrak \{a\}\}$ be an ideal of Noetherian local ring $(R,\{\mathfrak \{m\}\})$ and $M$ a finitely generated $R$-module of dimension $d$. In this paper we investigate the Artinianness of formal local cohomology modules under certain conditions on the local cohomology modules with respect to $\{\mathfrak \{m\}\}$. Also we prove that for an arbitrary local ring $(R,\{\mathfrak \{m\}\})$ (not necessarily complete), we have $\{\rm Att\}_R(\mathfrak \{F\}_\{\mathfrak \{a\}\}^d(M)) =\{\rm Min\} \{\rm V\}(\{\rm Ann\}_R \mathfrak \{F\}_\{\mathfrak \{a\}\}^d(M)).$},
author = {Rezaei, Shahram},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {formal local cohomology; local cohomology},
language = {eng},
number = {2},
pages = {177-185},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Artinianness of formal local cohomology modules},
url = {http://eudml.org/doc/294855},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Rezaei, Shahram
TI - Artinianness of formal local cohomology modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 2
SP - 177
EP - 185
AB - Let ${\mathfrak {a}}$ be an ideal of Noetherian local ring $(R,{\mathfrak {m}})$ and $M$ a finitely generated $R$-module of dimension $d$. In this paper we investigate the Artinianness of formal local cohomology modules under certain conditions on the local cohomology modules with respect to ${\mathfrak {m}}$. Also we prove that for an arbitrary local ring $(R,{\mathfrak {m}})$ (not necessarily complete), we have ${\rm Att}_R(\mathfrak {F}_{\mathfrak {a}}^d(M)) ={\rm Min} {\rm V}({\rm Ann}_R \mathfrak {F}_{\mathfrak {a}}^d(M)).$
LA - eng
KW - formal local cohomology; local cohomology
UR - http://eudml.org/doc/294855
ER -
References
top- Asgharzadeh M., Divaani-Aazar K., 10.1080/00927871003610312, Comm. Algebra 39 (2011), no. 3, 1082–1103. MR2810597DOI10.1080/00927871003610312
- Bijan-Zadeh M. H., Rezaei S., Artinianness and attached primes of formal local cohomology modules, Algebra Colloq. 21 (2014), no. 2, 307–316. MR3192350
- Brodmann M., Sharp R. Y., Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, 1998. MR1613627
- Eghbali M., 10.7146/math.scand.a-15478, Math. Scand. 113 (2013), no. 1, 5–19. MR3105540DOI10.7146/math.scand.a-15478
- MacDonald I. G., Secondary representations of modules over a commutative ring, Symposia Mathematica, Vol. XI, Convegno di Algebra Commutativa, INDAM, Rome, 1971, Academic Press, London, 1973, pages 23–43. MR0342506
- Macdonald I. G., Sharp R. Y., 10.1093/qmath/23.2.197, Quart. J. Math. Oxford Ser. (2) 23 (1972), 197–204. MR0299598DOI10.1093/qmath/23.2.197
- Melkersson L., Schenzel P., The co-localization of an Artinian module, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 1, 121–131. MR1317331
- Peskine C., Szpiro L., 10.1007/BF02685877, Inst. Hautes Études Sci. Publ. Math. No. 42 (1972), 47–119 (French). MR0374130DOI10.1007/BF02685877
- Rezaei S., 10.2996/kmj/1436403898, Kodai Math. J. 38 (2015), no. 2, 430–436. MR3368073DOI10.2996/kmj/1436403898
- Rezaei S., 10.1080/00927872.2016.1226867, Comm. Algebra 45 (2017), no. 5, 1935–1940. MR3582837DOI10.1080/00927872.2016.1226867
- Schenzel P., 10.1016/j.jalgebra.2007.06.015, J. Algebra 315 (2007), no. 2, 894–923. MR2351900DOI10.1016/j.jalgebra.2007.06.015
- Sharp R. Y., Some results on the vanishing of local cohomology modules, Proc. London Math. Soc. (3) 30 (1975), 177–195. MR0379474
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.