On the connection between cherry-tree copulas and truncated R-vine copulas
Kybernetika (2017)
- Volume: 53, Issue: 3, page 437-460
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKovács, Edith, and Szántai, Tamás. "On the connection between cherry-tree copulas and truncated R-vine copulas." Kybernetika 53.3 (2017): 437-460. <http://eudml.org/doc/294856>.
@article{Kovács2017,
abstract = {Vine copulas are a flexible way for modeling dependences using only pair-copulas as building blocks. However if the number of variables grows the problem gets fastly intractable. For dealing with this problem Brechmann at al. proposed the truncated R-vine copulas. The truncated R-vine copula has the very useful property that it can be constructed by using only pair-copulas and a lower number of conditional pair-copulas. In our earlier papers we introduced the concept of cherry-tree copulas. In this paper we characterize the relation between cherry-tree copulas and truncated R-vine copulas. It turns out that the concept of cherry-tree copula is more general than the concept of truncated R-vine copula. Although both contain in their expressions conditional independences between the variables, the truncated R-vines constructed in greedy way do not exploit the existing conditional independences in the data. We give a necessary and sufficient condition for a cherry-tree copula to be a truncated R-vine copula. We introduce a new method for truncated R-vine modeling. The new idea is that in the first step we construct the top tree by exploiting conditional independences for finding a good-fitting cherry-tree of order $k$. If this top tree is a tree in an R-vine structure then this will define a truncated R-vine at level $k$ and in the second step we construct a sequence of trees which leads to it. If this top tree is not a tree in an R-vine structure then we can transform it into such a tree at level $k+1$ and then we can again apply the second step. The second step is performed by a backward construction named Backward Algorithm. This way the cherry-tree copulas always can be expressed by pair-copulas and conditional pair-copulas.},
author = {Kovács, Edith, Szántai, Tamás},
journal = {Kybernetika},
keywords = {copula; conditional independences; Regular-vine; truncated vine; cherry-tree copula},
language = {eng},
number = {3},
pages = {437-460},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the connection between cherry-tree copulas and truncated R-vine copulas},
url = {http://eudml.org/doc/294856},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Kovács, Edith
AU - Szántai, Tamás
TI - On the connection between cherry-tree copulas and truncated R-vine copulas
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 3
SP - 437
EP - 460
AB - Vine copulas are a flexible way for modeling dependences using only pair-copulas as building blocks. However if the number of variables grows the problem gets fastly intractable. For dealing with this problem Brechmann at al. proposed the truncated R-vine copulas. The truncated R-vine copula has the very useful property that it can be constructed by using only pair-copulas and a lower number of conditional pair-copulas. In our earlier papers we introduced the concept of cherry-tree copulas. In this paper we characterize the relation between cherry-tree copulas and truncated R-vine copulas. It turns out that the concept of cherry-tree copula is more general than the concept of truncated R-vine copula. Although both contain in their expressions conditional independences between the variables, the truncated R-vines constructed in greedy way do not exploit the existing conditional independences in the data. We give a necessary and sufficient condition for a cherry-tree copula to be a truncated R-vine copula. We introduce a new method for truncated R-vine modeling. The new idea is that in the first step we construct the top tree by exploiting conditional independences for finding a good-fitting cherry-tree of order $k$. If this top tree is a tree in an R-vine structure then this will define a truncated R-vine at level $k$ and in the second step we construct a sequence of trees which leads to it. If this top tree is not a tree in an R-vine structure then we can transform it into such a tree at level $k+1$ and then we can again apply the second step. The second step is performed by a backward construction named Backward Algorithm. This way the cherry-tree copulas always can be expressed by pair-copulas and conditional pair-copulas.
LA - eng
KW - copula; conditional independences; Regular-vine; truncated vine; cherry-tree copula
UR - http://eudml.org/doc/294856
ER -
References
top- Aas, K., Czado, C., Frigessi, A., Bakken, H., 10.1016/j.insmatheco.2007.02.001, Insur. Math. Econom. 44 (2009), 182-198. MR2517884DOI10.1016/j.insmatheco.2007.02.001
- Acar, E. F., Genest, C., Nešlehová, J., 10.1016/j.jmva.2012.02.001, J. Multivariate Anal. 110 (2012), 74-90. MR2927510DOI10.1016/j.jmva.2012.02.001
- Bauer, A., Czado, C., Klein, T., 10.1002/cjs.10131, Canad. J. Stat. 40 (2012), 1, 86-109. MR2896932DOI10.1002/cjs.10131
- Bedford, T., Cooke, R., 10.1023/a:1016725902970, Ann. Math. Artif. Intell. 32 (2001), 245-268. MR1859866DOI10.1023/a:1016725902970
- Bedford, T., Cooke, R., 10.1214/aos/1031689016, Ann. Statist. 30 (2002), 4, 1031-1068. MR1926167DOI10.1214/aos/1031689016
- Brechmann, E. C., Czado, C., Aas, K., 10.1002/cjs.10141, Canad. J. Statist. 40 (2012), 1, 68-85. MR2896931DOI10.1002/cjs.10141
- Bukszár, J., Prékopa, A., 10.1287/moor.26.1.174.10596, Math. Oper. Res. 26 (2001), 174-192. MR1821836DOI10.1287/moor.26.1.174.10596
- Bukszár, J., Szántai, T., 10.1080/1055678021000033955, Optim. Methods Software 17 (2002), 409-422. MR1944289DOI10.1080/1055678021000033955
- Cover, T. M., Thomas, J. A., 10.1002/0471200611, Wiley Interscience, New York 1991. MR1122806DOI10.1002/0471200611
- Czado, C., 10.1007/978-3-642-12465-5_4, In: Copula Theory and Its Applications (P. Jaworski, F. Durante, W. Härdle, and T. Rychlik, eds.), Springer, Berlin 2010. MR3051264DOI10.1007/978-3-642-12465-5_4
- Dissman, J., Brechmann, E. C., Czado, C., Kurowicka, D., 10.1016/j.csda.2012.08.010, Comput. Statist. Data Anal. 59 (2013), 52-69. MR3000041DOI10.1016/j.csda.2012.08.010
- Hanea, A., Kurowicka, D., Cooke, R., 10.1002/qre.808, Qual. Reliab. Engrg. 22 (2006), 708-729. DOI10.1002/qre.808
- Haff, I. Hobaek, Aas, K., Frigessi, A., 10.1016/j.jmva.2009.12.001, J. Multivariate Anal. 101 (2010), 5, 1296-1310. MR2595309DOI10.1016/j.jmva.2009.12.001
- Haff, I. Hobaek, Segers, J., , 2010. DOI
- Hobaek-Haff, I., Aas, K., Frigessi, A., Lacal, V., 10.1016/j.csda.2016.03.003, Computat. Statist. Data Anal. 101 (2016), 186-208. MR3504845DOI10.1016/j.csda.2016.03.003
- Joe, H., 10.1201/b13150, Chapman and Hall, London 1997. Zbl0990.62517MR1462613DOI10.1201/b13150
- Kovács, E., Szántai, T., 10.1007/978-3-642-03735-1_3, Lect. Notes Economics Math. Systems 633, Proc. IFIP/IIASA/GAMM Workshop on Coping with Uncertainty, Robust Solutions, 2008, IIASA, Laxenburg 2010, pp. 39-56. MR2681735DOI10.1007/978-3-642-03735-1_3
- Kovács, E., Szántai, T., , 2010. DOI
- Kovács, E., Szántai, T., Hypergraphs in the characterization of regular-vine copula structures., In: Proc. 13th International Conference on Mathematics and its Applications, Timisoara 2012(a), pp. 335-344.
- Kovács, E., Szántai, T., , 2012(b). DOI
- Kurowicka, D., Cooke, R., 10.1109/wsc.2002.1172895, In: Proc. 2002 Winter Simulation Conference 2002, pp. 270-278. DOI10.1109/wsc.2002.1172895
- Kurowicka, D., Cooke, R. M., 10.1002/0470863072, John Wiley, Chichester 2006. MR2216540DOI10.1002/0470863072
- Kurowicka, D., Optimal truncation of vines., In: Dependence-Modeling - Handbook on Vine Copulas (D. Kurowicka and H. Joe, eds.), Word Scientific Publishing, Singapore 2011. MR2856976
- Lauritzen, S. L., Spiegelhalter, D. J., Local Computations with probabilites on graphical structures and their application to expert systems., J. Roy. Statist. Soc. B 50 (1988), 157-227. MR0964177
- Lauritzen, S. L., Graphical Models., Clarendon Press, Oxford 1996. MR1419991
- Szántai, T., Kovács, E., 10.1007/s10479-010-0814-y, In: Proc. Conference Applied Mathematical Programming and Modelling (APMOD), Bratislava 2008, Ann. Oper. Res. 193 (2012), 1, 71-90. MR2874757DOI10.1007/s10479-010-0814-y
- Whittaker, J., Graphical Models in Applied Multivariate Statistics., John Wiley and Sons, 1990. MR1112133
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.