Annihilators of local homology modules

Shahram Rezaei

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 225-234
  • ISSN: 0011-4642

Abstract

top
Let ( R , 𝔪 ) be a local ring, 𝔞 an ideal of R and M a nonzero Artinian R -module of Noetherian dimension n with hd ( 𝔞 , M ) = n . We determine the annihilator of the top local homology module H n 𝔞 ( M ) . In fact, we prove that Ann R ( H n 𝔞 ( M ) ) = Ann R ( N ( 𝔞 , M ) ) , where N ( 𝔞 , M ) denotes the smallest submodule of M such that hd ( 𝔞 , M / N ( 𝔞 , M ) ) < n . As a consequence, it follows that for a complete local ring ( R , 𝔪 ) all associated primes of H n 𝔞 ( M ) are minimal.

How to cite

top

Rezaei, Shahram. "Annihilators of local homology modules." Czechoslovak Mathematical Journal 69.1 (2019): 225-234. <http://eudml.org/doc/294859>.

@article{Rezaei2019,
abstract = {Let $(R,\{\mathfrak \{m\}\})$ be a local ring, $\mathfrak \{a\}$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module of Noetherian dimension $n$ with $\{\rm hd\}(\mathfrak \{a\}, M)=n $. We determine the annihilator of the top local homology module $\{\rm H\}_\{n\}^\{\mathfrak \{a\}\}(M)$. In fact, we prove that \[ \{\rm Ann\}\_R(\{\rm H\}\_\{n\}^\{\mathfrak \{a\}\}(M))=\{\rm Ann\}\_R(N(\mathfrak \{a\},M)), \] where $N(\mathfrak \{a\},M)$ denotes the smallest submodule of $M$ such that $\{\rm hd\}(\{\mathfrak \{a\}\},M/N(\mathfrak \{a\},M))<n$. As a consequence, it follows that for a complete local ring $(R,\mathfrak \{m\})$ all associated primes of $\{\rm H\}_\{n\}^\{\mathfrak \{a\}\}(M) $ are minimal.},
author = {Rezaei, Shahram},
journal = {Czechoslovak Mathematical Journal},
keywords = {local homology; Artinian modules; annihilator},
language = {eng},
number = {1},
pages = {225-234},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Annihilators of local homology modules},
url = {http://eudml.org/doc/294859},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Rezaei, Shahram
TI - Annihilators of local homology modules
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 225
EP - 234
AB - Let $(R,{\mathfrak {m}})$ be a local ring, $\mathfrak {a}$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module of Noetherian dimension $n$ with ${\rm hd}(\mathfrak {a}, M)=n $. We determine the annihilator of the top local homology module ${\rm H}_{n}^{\mathfrak {a}}(M)$. In fact, we prove that \[ {\rm Ann}_R({\rm H}_{n}^{\mathfrak {a}}(M))={\rm Ann}_R(N(\mathfrak {a},M)), \] where $N(\mathfrak {a},M)$ denotes the smallest submodule of $M$ such that ${\rm hd}({\mathfrak {a}},M/N(\mathfrak {a},M))<n$. As a consequence, it follows that for a complete local ring $(R,\mathfrak {m})$ all associated primes of ${\rm H}_{n}^{\mathfrak {a}}(M) $ are minimal.
LA - eng
KW - local homology; Artinian modules; annihilator
UR - http://eudml.org/doc/294859
ER -

References

top
  1. Atazadeh, A., Sedghi, M., Naghipour, R., 10.1007/s00013-014-0629-1, Arch. Math. 102 (2014), 225-236. (2014) Zbl1292.13004MR3181712DOI10.1007/s00013-014-0629-1
  2. Bahmanpour, K., 10.1080/00927872.2014.900687, Commun. Algebra 43 (2015), 2509-2515. (2015) Zbl1323.13003MR3344203DOI10.1080/00927872.2014.900687
  3. Bahmanpour, K., Azami, J., Ghasemi, G., 10.1016/j.jalgebra.2012.03.026, J. Algebra 363 (2012), 8-13. (2012) Zbl1262.13027MR2925842DOI10.1016/j.jalgebra.2012.03.026
  4. Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
  5. Cuong, N. T., Nam, T. T., 10.1017/S0305004101005126, Math. Proc. Camb. Philos. Soc. 131 (2001), 61-72. (2001) Zbl1094.13524MR1833074DOI10.1017/S0305004101005126
  6. Cuong, N. T., Nam, T. T., 10.1016/j.jalgebra.2007.11.030, J. Algebra 319 (2008), 4712-4737. (2008) Zbl1143.13021MR2416740DOI10.1016/j.jalgebra.2007.11.030
  7. Cuong, N. T., Nhan, L. T., On the Noetherian dimension of Artinian modules, Vietnam J. Math. 30 (2002), 121-130. (2002) Zbl1096.13523MR1934343
  8. Divaani-Aazar, K., Naghipour, R., Tousi, M., 10.1090/S0002-9939-02-06500-0, Proc. Am. Math. Soc. 130 (2002), 3537-3544. (2002) Zbl0998.13007MR1918830DOI10.1090/S0002-9939-02-06500-0
  9. Greenless, J. P. C., May, J. P., 10.1016/0021-8693(92)90026-I, J. Algebra 149 (1992), 438-453. (1992) Zbl0774.18007MR1172439DOI10.1016/0021-8693(92)90026-I
  10. Kirby, D., 10.1093/qmath/41.4.419, Q. J. Math., Oxf. II. Ser. 41 (1990), 419-429. (1990) Zbl0724.13015MR1081104DOI10.1093/qmath/41.4.419
  11. Ooishi, A., 10.32917/hmj/1206136213, Hiroshima Math. J. 6 (1976), 573-587. (1976) Zbl0437.13007MR0422243DOI10.32917/hmj/1206136213
  12. Rezaei, S., Associated primes of top local homology modules with respect to an ideal, Acta Math. Univ. Comen., New Ser. 81 (2012), 197-202. (2012) Zbl1274.13021MR2975285
  13. Rezaei, S., 10.1080/00927872.2016.1226867, Commun. Algebra 45 (2017), 1935-1940. (2017) Zbl1375.13026MR3582837DOI10.1080/00927872.2016.1226867
  14. Roberts, R. N., 10.1093/qmath/26.1.269, Quart. J. Math. Oxford Ser. (2) 26 (1975), 269-273. (1975) Zbl0311.13006MR0389884DOI10.1093/qmath/26.1.269
  15. Sharp, R. Y., 10.1112/plms/s3-30.2.177, Proc. Lond. Math. Soc., III. Ser. 30 (1975), 177-195. (1975) Zbl0298.13011MR0379474DOI10.1112/plms/s3-30.2.177
  16. Tang, Z., 10.1080/00927879408824928, Commun. Algebra 22 (1994), 1675-1684. (1994) Zbl0797.13005MR1264734DOI10.1080/00927879408824928

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.