Annihilators of local homology modules
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 1, page 225-234
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRezaei, Shahram. "Annihilators of local homology modules." Czechoslovak Mathematical Journal 69.1 (2019): 225-234. <http://eudml.org/doc/294859>.
@article{Rezaei2019,
abstract = {Let $(R,\{\mathfrak \{m\}\})$ be a local ring, $\mathfrak \{a\}$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module of Noetherian dimension $n$ with $\{\rm hd\}(\mathfrak \{a\}, M)=n $. We determine the annihilator of the top local homology module $\{\rm H\}_\{n\}^\{\mathfrak \{a\}\}(M)$. In fact, we prove that \[ \{\rm Ann\}\_R(\{\rm H\}\_\{n\}^\{\mathfrak \{a\}\}(M))=\{\rm Ann\}\_R(N(\mathfrak \{a\},M)), \]
where $N(\mathfrak \{a\},M)$ denotes the smallest submodule of $M$ such that $\{\rm hd\}(\{\mathfrak \{a\}\},M/N(\mathfrak \{a\},M))<n$. As a consequence, it follows that for a complete local ring $(R,\mathfrak \{m\})$ all associated primes of $\{\rm H\}_\{n\}^\{\mathfrak \{a\}\}(M) $ are minimal.},
author = {Rezaei, Shahram},
journal = {Czechoslovak Mathematical Journal},
keywords = {local homology; Artinian modules; annihilator},
language = {eng},
number = {1},
pages = {225-234},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Annihilators of local homology modules},
url = {http://eudml.org/doc/294859},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Rezaei, Shahram
TI - Annihilators of local homology modules
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 225
EP - 234
AB - Let $(R,{\mathfrak {m}})$ be a local ring, $\mathfrak {a}$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module of Noetherian dimension $n$ with ${\rm hd}(\mathfrak {a}, M)=n $. We determine the annihilator of the top local homology module ${\rm H}_{n}^{\mathfrak {a}}(M)$. In fact, we prove that \[ {\rm Ann}_R({\rm H}_{n}^{\mathfrak {a}}(M))={\rm Ann}_R(N(\mathfrak {a},M)), \]
where $N(\mathfrak {a},M)$ denotes the smallest submodule of $M$ such that ${\rm hd}({\mathfrak {a}},M/N(\mathfrak {a},M))<n$. As a consequence, it follows that for a complete local ring $(R,\mathfrak {m})$ all associated primes of ${\rm H}_{n}^{\mathfrak {a}}(M) $ are minimal.
LA - eng
KW - local homology; Artinian modules; annihilator
UR - http://eudml.org/doc/294859
ER -
References
top- Atazadeh, A., Sedghi, M., Naghipour, R., 10.1007/s00013-014-0629-1, Arch. Math. 102 (2014), 225-236. (2014) Zbl1292.13004MR3181712DOI10.1007/s00013-014-0629-1
- Bahmanpour, K., 10.1080/00927872.2014.900687, Commun. Algebra 43 (2015), 2509-2515. (2015) Zbl1323.13003MR3344203DOI10.1080/00927872.2014.900687
- Bahmanpour, K., Azami, J., Ghasemi, G., 10.1016/j.jalgebra.2012.03.026, J. Algebra 363 (2012), 8-13. (2012) Zbl1262.13027MR2925842DOI10.1016/j.jalgebra.2012.03.026
- Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
- Cuong, N. T., Nam, T. T., 10.1017/S0305004101005126, Math. Proc. Camb. Philos. Soc. 131 (2001), 61-72. (2001) Zbl1094.13524MR1833074DOI10.1017/S0305004101005126
- Cuong, N. T., Nam, T. T., 10.1016/j.jalgebra.2007.11.030, J. Algebra 319 (2008), 4712-4737. (2008) Zbl1143.13021MR2416740DOI10.1016/j.jalgebra.2007.11.030
- Cuong, N. T., Nhan, L. T., On the Noetherian dimension of Artinian modules, Vietnam J. Math. 30 (2002), 121-130. (2002) Zbl1096.13523MR1934343
- Divaani-Aazar, K., Naghipour, R., Tousi, M., 10.1090/S0002-9939-02-06500-0, Proc. Am. Math. Soc. 130 (2002), 3537-3544. (2002) Zbl0998.13007MR1918830DOI10.1090/S0002-9939-02-06500-0
- Greenless, J. P. C., May, J. P., 10.1016/0021-8693(92)90026-I, J. Algebra 149 (1992), 438-453. (1992) Zbl0774.18007MR1172439DOI10.1016/0021-8693(92)90026-I
- Kirby, D., 10.1093/qmath/41.4.419, Q. J. Math., Oxf. II. Ser. 41 (1990), 419-429. (1990) Zbl0724.13015MR1081104DOI10.1093/qmath/41.4.419
- Ooishi, A., 10.32917/hmj/1206136213, Hiroshima Math. J. 6 (1976), 573-587. (1976) Zbl0437.13007MR0422243DOI10.32917/hmj/1206136213
- Rezaei, S., Associated primes of top local homology modules with respect to an ideal, Acta Math. Univ. Comen., New Ser. 81 (2012), 197-202. (2012) Zbl1274.13021MR2975285
- Rezaei, S., 10.1080/00927872.2016.1226867, Commun. Algebra 45 (2017), 1935-1940. (2017) Zbl1375.13026MR3582837DOI10.1080/00927872.2016.1226867
- Roberts, R. N., 10.1093/qmath/26.1.269, Quart. J. Math. Oxford Ser. (2) 26 (1975), 269-273. (1975) Zbl0311.13006MR0389884DOI10.1093/qmath/26.1.269
- Sharp, R. Y., 10.1112/plms/s3-30.2.177, Proc. Lond. Math. Soc., III. Ser. 30 (1975), 177-195. (1975) Zbl0298.13011MR0379474DOI10.1112/plms/s3-30.2.177
- Tang, Z., 10.1080/00927879408824928, Commun. Algebra 22 (1994), 1675-1684. (1994) Zbl0797.13005MR1264734DOI10.1080/00927879408824928
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.