Fixed points with respect to the L-slice homomorphism
Archivum Mathematicum (2019)
- Volume: 055, Issue: 1, page 43-53
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topSabna, K.S., and Mangalambal, N.R.. "Fixed points with respect to the L-slice homomorphism $\sigma _{a} $." Archivum Mathematicum 055.1 (2019): 43-53. <http://eudml.org/doc/294862>.
@article{Sabna2019,
abstract = {Given a locale $L$ and a join semilattice $J$ with bottom element $0_\{J\}$, a new concept $(\sigma ,J)$ called $L$-slice is defined,where $\sigma $ is as an action of the locale $L$ on the join semilattice $J$. The $L$-slice $(\sigma ,J)$ adopts topological properties of the locale $L$ through the action $\sigma $. It is shown that for each $a\in L$, $\sigma _\{a\} $ is an interior operator on $(\sigma ,J)$.The collection $M=\lbrace \sigma _\{a\};a \in L\rbrace $ is a Priestly space and a subslice of $L$-$\operatorname\{Hom\}(J,J)$. If the locale $L$ is spatial we establish an isomorphism between the $L$-slices $(\sigma ,L) $ and $(\delta ,M) $. We have shown that the fixed set of $\sigma _\{a\}$, $a\in L $ is a subslice of $(\sigma ,J)$ and prove some equivalent properties.},
author = {Sabna, K.S., Mangalambal, N.R.},
journal = {Archivum Mathematicum},
keywords = {$L$-slice; $L$-slice homomorphism; subslice; fixed set and ideals},
language = {eng},
number = {1},
pages = {43-53},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Fixed points with respect to the L-slice homomorphism $\sigma _\{a\} $},
url = {http://eudml.org/doc/294862},
volume = {055},
year = {2019},
}
TY - JOUR
AU - Sabna, K.S.
AU - Mangalambal, N.R.
TI - Fixed points with respect to the L-slice homomorphism $\sigma _{a} $
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 1
SP - 43
EP - 53
AB - Given a locale $L$ and a join semilattice $J$ with bottom element $0_{J}$, a new concept $(\sigma ,J)$ called $L$-slice is defined,where $\sigma $ is as an action of the locale $L$ on the join semilattice $J$. The $L$-slice $(\sigma ,J)$ adopts topological properties of the locale $L$ through the action $\sigma $. It is shown that for each $a\in L$, $\sigma _{a} $ is an interior operator on $(\sigma ,J)$.The collection $M=\lbrace \sigma _{a};a \in L\rbrace $ is a Priestly space and a subslice of $L$-$\operatorname{Hom}(J,J)$. If the locale $L$ is spatial we establish an isomorphism between the $L$-slices $(\sigma ,L) $ and $(\delta ,M) $. We have shown that the fixed set of $\sigma _{a}$, $a\in L $ is a subslice of $(\sigma ,J)$ and prove some equivalent properties.
LA - eng
KW - $L$-slice; $L$-slice homomorphism; subslice; fixed set and ideals
UR - http://eudml.org/doc/294862
ER -
References
top- Abramsky, S., Jung, A., Domain Theory, Handbook of Logic in Computer Science, 1994, pp. 1–168. (1994) MR1365749
- Atiyah, M.F., Macdonald, I.G., Introduction to commutative algebra, Addison-Wesley Publishing Company, 1969, Student economy edition. (1969) MR0242802
- Birkhoff, G., Lattice Theory, American Mathematical Society, 1940. (1940) Zbl0063.00402MR0001959
- Gratzer, G., General lattice theory, Birkhauser, 2003. (2003) MR2451139
- Johnstone, P.T., Stone Spaces, Cambridge University Press, 1982. (1982) Zbl0499.54001MR0698074
- Johnstone, P.T., 10.1090/S0273-0979-1983-15080-2, Bull. Amer. Math. Soc. (N.S.) (1983), 41–53. (1983) MR0682820DOI10.1090/S0273-0979-1983-15080-2
- Matsumara, H., Commutative algebra, W.A. Benjamin, Inc., New York, 1970. (1970) MR0266911
- Musli, C., Introduction to Rings and Modules, Narosa Publishing House, 1994. (1994)
- Picado, J., Pultr, A., Frames and locales. Topology without points Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel,, Frontiers in Mathematics. Birkhauser/Springer Basel AG, Basel, 2012. (2012) MR2868166
- Scott, D., Strachey, C., Towards a mathematical semantics for computer languages, Proceedings of the Symposium on Computers and Automata, Polytechnic Institute of Brooklyn Press, New York, 1971. (1971)
- Vickers, S., Topology via Logic, Cambridge Tracts Theoret. Comput. Sci. (1989). (1989) MR1002193
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.