Converse theorem for practical stability of nonlinear impulsive systems and applications
Boulbaba Ghanmi; Mohsen Dlala; Mohamed Ali Hammami
Kybernetika (2018)
- Volume: 54, Issue: 3, page 496-521
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGhanmi, Boulbaba, Dlala, Mohsen, and Hammami, Mohamed Ali. "Converse theorem for practical stability of nonlinear impulsive systems and applications." Kybernetika 54.3 (2018): 496-521. <http://eudml.org/doc/294864>.
@article{Ghanmi2018,
abstract = {The Lyapunov's second method is one of the most famous techniques for studying the stability properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov function, which checks the stability properties of a specific system without the need to generate system solutions. An important question is about the reversibility or converse of Lyapunov's second method; i. e., given a specific stability property does there exist an appropriate Lyapunov function? The main result of this paper is a converse Lyapunov Theorem for practical asymptotic stable impulsive systems. Applying our converse Theorem, several criteria on practical asymptotic stability of the solution of perturbed impulsive systems and cascade impulsive systems are established. Finally, some examples are given to show the effectiveness of the derived results.},
author = {Ghanmi, Boulbaba, Dlala, Mohsen, Hammami, Mohamed Ali},
journal = {Kybernetika},
keywords = {converse Lyapunov theorem; practical asymptotic stability; impulsive systems; cascade systems; perturbed systems},
language = {eng},
number = {3},
pages = {496-521},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Converse theorem for practical stability of nonlinear impulsive systems and applications},
url = {http://eudml.org/doc/294864},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Ghanmi, Boulbaba
AU - Dlala, Mohsen
AU - Hammami, Mohamed Ali
TI - Converse theorem for practical stability of nonlinear impulsive systems and applications
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 3
SP - 496
EP - 521
AB - The Lyapunov's second method is one of the most famous techniques for studying the stability properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov function, which checks the stability properties of a specific system without the need to generate system solutions. An important question is about the reversibility or converse of Lyapunov's second method; i. e., given a specific stability property does there exist an appropriate Lyapunov function? The main result of this paper is a converse Lyapunov Theorem for practical asymptotic stable impulsive systems. Applying our converse Theorem, several criteria on practical asymptotic stability of the solution of perturbed impulsive systems and cascade impulsive systems are established. Finally, some examples are given to show the effectiveness of the derived results.
LA - eng
KW - converse Lyapunov theorem; practical asymptotic stability; impulsive systems; cascade systems; perturbed systems
UR - http://eudml.org/doc/294864
ER -
References
top- Bacciotti, A., Rosier, L., 10.1007/bf02741887, Math. Control Signals Systems 11 (1998), 101-128. MR1628047DOI10.1007/bf02741887
- Bainov, D. D., Simeonov, P. S., Systems with Impulse Effect: Stability, Theory, and Applications., Ellis Horwood, Chichester 1989. MR1010418
- Benabdallah, A., Ellouze, I., Hammami, M. A., 10.1007/s10883-008-9057-5, J. Dynamical Control Systems 15 (2009), 45-62. MR2475660DOI10.1007/s10883-008-9057-5
- Benabdallah, A., Dlala, M., Hammami, M. A., 10.1016/j.sysconle.2006.08.009, Systems Control Lett. 56 (2007), 179-187. MR2296644DOI10.1016/j.sysconle.2006.08.009
- Hamed, B. Ben, Ellouze, I., Hammami, M. A., 10.1007/s00009-010-0083-7, Mediterranean J. Math. 8 (2011), 603-616. MR2860688DOI10.1007/s00009-010-0083-7
- Hamed, B. Ben, Hammami, M. .A, 10.1007/s11768-009-8017-2, J. Control Theory Appl. 7 (2009), 175-180. MR2526947DOI10.1007/s11768-009-8017-2
- Cai, C., Teel, A., Goebel, R., 10.1109/tac.2007.900829, IEEE Trans. Automat. Control 52 (2007), 7, 1264-1277. MR2332751DOI10.1109/tac.2007.900829
- Corless, M., 10.1007/bf00939420, J. Optim. Theory Appl. 64 (1990), 481-494. MR1043736DOI10.1007/bf00939420
- Dlala, M., Ghanmi, B., Hammami, M. A, Exponential practical stability of nonlinear impulsive systems: converse theorem and applications., Dynamics Continuous Discrete Impulsive Systems 21 (2014), 37-64. MR3202437
- Dlala, M., Hammami, M. A., 10.1007/s10883-007-9020-x, J. Dynamical Control Systems 13 (2007), 373-386. MR2337283DOI10.1007/s10883-007-9020-x
- Giesl, P., Hafstein, S., 10.3934/dcdsb.2015.20.2291, Discrete Continuous Dynamical Systems: Series B 20 (2015), 2291-2331. MR3423237DOI10.3934/dcdsb.2015.20.2291
- Gordon, S. P., 10.1137/0310007, SIAM J. Control Optim. 10 (1972), 76-81. MR0318707DOI10.1137/0310007
- Hahn, W., 10.1007/978-3-642-50085-5, Springer-Verlag, 1967. Zbl0189.38503MR0223668DOI10.1007/978-3-642-50085-5
- Isidori, A., 10.1007/978-3-662-02581-9, Springer-Verlag, 1989. MR1015932DOI10.1007/978-3-662-02581-9
- Kellett, C., 10.3934/dcdsb.2015.20.2333, Discrete Continuous Dynamical Systems: Series B 20 (2015), 2333-2360. MR3423238DOI10.3934/dcdsb.2015.20.2333
- Jiang, Z. P., Teel, A. R., Praly, L., 10.1007/bf01211469, Math. Control, Signals Systems 7 (1995), 95-120. MR1359023DOI10.1007/bf01211469
- Wang, Y., 10.1016/s0167-6911(01)00164-5, Systems Control Lett, 45 (2002), 49-58. MR2010491DOI10.1016/s0167-6911(01)00164-5
- Khalil, H. K., Nonlinear Systems. Third edition., Macmillan Publishing Company, 2002. MR1201326
- Lakshmikantham, V., Leela, S., Martynyuk, A. A., 10.1142/1192, World Scientific, Singapore 1990. MR1089428DOI10.1142/1192
- Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., 10.1142/0906, Singapore and Teaneck, World Scientific, NJ 1989. MR1082551DOI10.1142/0906
- LaSalle, J. P., Lefschetz, S., 10.1002/zamm.19620421022, Academic Press, New York 1961. MR0132876DOI10.1002/zamm.19620421022
- Lin, Y., Sontag, E. D., Wang, Y., 10.1137/s0363012993259981, SIAM J. Control Optim. 34 (1996), 124-160. MR1372908DOI10.1137/s0363012993259981
- Mancilla-Aguilar, J. L., Garcia, R. A., 10.1016/s0167-6911(00)00040-2, Systems Control Lett. 41 (2000), 67-71. MR1827722DOI10.1016/s0167-6911(00)00040-2
- Panteley, E., Loria, A., 10.1016/s0167-6911(97)00119-9, Systems Control Lett. 33 (1998), 131-138. MR1607815DOI10.1016/s0167-6911(97)00119-9
- Pradalier, C., Siegwart, R., Hirzinger, G., 10.1007/978-3-642-19457-3, Springer-Verlag, Berlin 2011. DOI10.1007/978-3-642-19457-3
- Spong, M. W., Vidyasagar, M., Robot Dynamics and Control., John Wiley and Sons, Inc, New York 1989.
- Spong, M. W., The control of underactuated mechanical systems., In: First International Conference on Mecatronics, Mexico City 1994.
- Tsinias, J., 10.1007/978-3-642-19457-3, Systems Control Lett. 44 (2001), 373-384. MR2021956DOI10.1007/978-3-642-19457-3
- Yang, X.-S., 10.1093/imamci/dni006, IMA J. Math. Control Inform. 22 (2005), 80-87. MR2122276DOI10.1093/imamci/dni006
- Yang, T., 10.1007/3-540-47710-1, Springer, 2001. Zbl0996.93003MR1850661DOI10.1007/3-540-47710-1
- Yoshizawa, T., Stability Theory by Lyapunov's Second Method., Mathematical Society of Japan, 1966. MR0208086
- Zubov, V. I., Methods of A. M. Lyapunov and their Application., P. Noordhoff Ltd, Groningen 1964; translated from the Russian edition of 1957. MR0179428
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.