Converse theorem for practical stability of nonlinear impulsive systems and applications

Boulbaba Ghanmi; Mohsen Dlala; Mohamed Ali Hammami

Kybernetika (2018)

  • Volume: 54, Issue: 3, page 496-521
  • ISSN: 0023-5954

Abstract

top
The Lyapunov's second method is one of the most famous techniques for studying the stability properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov function, which checks the stability properties of a specific system without the need to generate system solutions. An important question is about the reversibility or converse of Lyapunov's second method; i. e., given a specific stability property does there exist an appropriate Lyapunov function? The main result of this paper is a converse Lyapunov Theorem for practical asymptotic stable impulsive systems. Applying our converse Theorem, several criteria on practical asymptotic stability of the solution of perturbed impulsive systems and cascade impulsive systems are established. Finally, some examples are given to show the effectiveness of the derived results.

How to cite

top

Ghanmi, Boulbaba, Dlala, Mohsen, and Hammami, Mohamed Ali. "Converse theorem for practical stability of nonlinear impulsive systems and applications." Kybernetika 54.3 (2018): 496-521. <http://eudml.org/doc/294864>.

@article{Ghanmi2018,
abstract = {The Lyapunov's second method is one of the most famous techniques for studying the stability properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov function, which checks the stability properties of a specific system without the need to generate system solutions. An important question is about the reversibility or converse of Lyapunov's second method; i. e., given a specific stability property does there exist an appropriate Lyapunov function? The main result of this paper is a converse Lyapunov Theorem for practical asymptotic stable impulsive systems. Applying our converse Theorem, several criteria on practical asymptotic stability of the solution of perturbed impulsive systems and cascade impulsive systems are established. Finally, some examples are given to show the effectiveness of the derived results.},
author = {Ghanmi, Boulbaba, Dlala, Mohsen, Hammami, Mohamed Ali},
journal = {Kybernetika},
keywords = {converse Lyapunov theorem; practical asymptotic stability; impulsive systems; cascade systems; perturbed systems},
language = {eng},
number = {3},
pages = {496-521},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Converse theorem for practical stability of nonlinear impulsive systems and applications},
url = {http://eudml.org/doc/294864},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Ghanmi, Boulbaba
AU - Dlala, Mohsen
AU - Hammami, Mohamed Ali
TI - Converse theorem for practical stability of nonlinear impulsive systems and applications
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 3
SP - 496
EP - 521
AB - The Lyapunov's second method is one of the most famous techniques for studying the stability properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov function, which checks the stability properties of a specific system without the need to generate system solutions. An important question is about the reversibility or converse of Lyapunov's second method; i. e., given a specific stability property does there exist an appropriate Lyapunov function? The main result of this paper is a converse Lyapunov Theorem for practical asymptotic stable impulsive systems. Applying our converse Theorem, several criteria on practical asymptotic stability of the solution of perturbed impulsive systems and cascade impulsive systems are established. Finally, some examples are given to show the effectiveness of the derived results.
LA - eng
KW - converse Lyapunov theorem; practical asymptotic stability; impulsive systems; cascade systems; perturbed systems
UR - http://eudml.org/doc/294864
ER -

References

top
  1. Bacciotti, A., Rosier, L., 10.1007/bf02741887, Math. Control Signals Systems 11 (1998), 101-128. MR1628047DOI10.1007/bf02741887
  2. Bainov, D. D., Simeonov, P. S., Systems with Impulse Effect: Stability, Theory, and Applications., Ellis Horwood, Chichester 1989. MR1010418
  3. Benabdallah, A., Ellouze, I., Hammami, M. A., 10.1007/s10883-008-9057-5, J. Dynamical Control Systems 15 (2009), 45-62. MR2475660DOI10.1007/s10883-008-9057-5
  4. Benabdallah, A., Dlala, M., Hammami, M. A., 10.1016/j.sysconle.2006.08.009, Systems Control Lett. 56 (2007), 179-187. MR2296644DOI10.1016/j.sysconle.2006.08.009
  5. Hamed, B. Ben, Ellouze, I., Hammami, M. A., 10.1007/s00009-010-0083-7, Mediterranean J. Math. 8 (2011), 603-616. MR2860688DOI10.1007/s00009-010-0083-7
  6. Hamed, B. Ben, Hammami, M. .A, 10.1007/s11768-009-8017-2, J. Control Theory Appl. 7 (2009), 175-180. MR2526947DOI10.1007/s11768-009-8017-2
  7. Cai, C., Teel, A., Goebel, R., 10.1109/tac.2007.900829, IEEE Trans. Automat. Control 52 (2007), 7, 1264-1277. MR2332751DOI10.1109/tac.2007.900829
  8. Corless, M., 10.1007/bf00939420, J. Optim. Theory Appl. 64 (1990), 481-494. MR1043736DOI10.1007/bf00939420
  9. Dlala, M., Ghanmi, B., Hammami, M. A, Exponential practical stability of nonlinear impulsive systems: converse theorem and applications., Dynamics Continuous Discrete Impulsive Systems 21 (2014), 37-64. MR3202437
  10. Dlala, M., Hammami, M. A., 10.1007/s10883-007-9020-x, J. Dynamical Control Systems 13 (2007), 373-386. MR2337283DOI10.1007/s10883-007-9020-x
  11. Giesl, P., Hafstein, S., 10.3934/dcdsb.2015.20.2291, Discrete Continuous Dynamical Systems: Series B 20 (2015), 2291-2331. MR3423237DOI10.3934/dcdsb.2015.20.2291
  12. Gordon, S. P., 10.1137/0310007, SIAM J. Control Optim. 10 (1972), 76-81. MR0318707DOI10.1137/0310007
  13. Hahn, W., 10.1007/978-3-642-50085-5, Springer-Verlag, 1967. Zbl0189.38503MR0223668DOI10.1007/978-3-642-50085-5
  14. Isidori, A., 10.1007/978-3-662-02581-9, Springer-Verlag, 1989. MR1015932DOI10.1007/978-3-662-02581-9
  15. Kellett, C., 10.3934/dcdsb.2015.20.2333, Discrete Continuous Dynamical Systems: Series B 20 (2015), 2333-2360. MR3423238DOI10.3934/dcdsb.2015.20.2333
  16. Jiang, Z. P., Teel, A. R., Praly, L., 10.1007/bf01211469, Math. Control, Signals Systems 7 (1995), 95-120. MR1359023DOI10.1007/bf01211469
  17. Wang, Y., 10.1016/s0167-6911(01)00164-5, Systems Control Lett, 45 (2002), 49-58. MR2010491DOI10.1016/s0167-6911(01)00164-5
  18. Khalil, H. K., Nonlinear Systems. Third edition., Macmillan Publishing Company, 2002. MR1201326
  19. Lakshmikantham, V., Leela, S., Martynyuk, A. A., 10.1142/1192, World Scientific, Singapore 1990. MR1089428DOI10.1142/1192
  20. Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., 10.1142/0906, Singapore and Teaneck, World Scientific, NJ 1989. MR1082551DOI10.1142/0906
  21. LaSalle, J. P., Lefschetz, S., 10.1002/zamm.19620421022, Academic Press, New York 1961. MR0132876DOI10.1002/zamm.19620421022
  22. Lin, Y., Sontag, E. D., Wang, Y., 10.1137/s0363012993259981, SIAM J. Control Optim. 34 (1996), 124-160. MR1372908DOI10.1137/s0363012993259981
  23. Mancilla-Aguilar, J. L., Garcia, R. A., 10.1016/s0167-6911(00)00040-2, Systems Control Lett. 41 (2000), 67-71. MR1827722DOI10.1016/s0167-6911(00)00040-2
  24. Panteley, E., Loria, A., 10.1016/s0167-6911(97)00119-9, Systems Control Lett. 33 (1998), 131-138. MR1607815DOI10.1016/s0167-6911(97)00119-9
  25. Pradalier, C., Siegwart, R., Hirzinger, G., 10.1007/978-3-642-19457-3, Springer-Verlag, Berlin 2011. DOI10.1007/978-3-642-19457-3
  26. Spong, M. W., Vidyasagar, M., Robot Dynamics and Control., John Wiley and Sons, Inc, New York 1989. 
  27. Spong, M. W., The control of underactuated mechanical systems., In: First International Conference on Mecatronics, Mexico City 1994. 
  28. Tsinias, J., 10.1007/978-3-642-19457-3, Systems Control Lett. 44 (2001), 373-384. MR2021956DOI10.1007/978-3-642-19457-3
  29. Yang, X.-S., 10.1093/imamci/dni006, IMA J. Math. Control Inform. 22 (2005), 80-87. MR2122276DOI10.1093/imamci/dni006
  30. Yang, T., 10.1007/3-540-47710-1, Springer, 2001. Zbl0996.93003MR1850661DOI10.1007/3-540-47710-1
  31. Yoshizawa, T., Stability Theory by Lyapunov's Second Method., Mathematical Society of Japan, 1966. MR0208086
  32. Zubov, V. I., Methods of A. M. Lyapunov and their Application., P. Noordhoff Ltd, Groningen 1964; translated from the Russian edition of 1957. MR0179428

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.