Note on improper coloring of -planar graphs
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 955-968
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChu, Yanan, Sun, Lei, and Yue, Jun. "Note on improper coloring of $1$-planar graphs." Czechoslovak Mathematical Journal 69.4 (2019): 955-968. <http://eudml.org/doc/294871>.
@article{Chu2019,
abstract = {A graph $G=(V,E)$ is called improperly $(d_1, \dots , d_k)$-colorable if the vertex set $V$ can be partitioned into subsets $V_1, \dots , V_k$ such that the graph $G[V_i]$ induced by the vertices of $V_i$ has maximum degree at most $d_i$ for all $1 \le i \le k$. In this paper, we mainly study the improper coloring of $1$-planar graphs and show that $1$-planar graphs with girth at least $7$ are $(2,0,0,0)$-colorable.},
author = {Chu, Yanan, Sun, Lei, Yue, Jun},
journal = {Czechoslovak Mathematical Journal},
keywords = {improper coloring; 1-planar graph; discharging method},
language = {eng},
number = {4},
pages = {955-968},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Note on improper coloring of $1$-planar graphs},
url = {http://eudml.org/doc/294871},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Chu, Yanan
AU - Sun, Lei
AU - Yue, Jun
TI - Note on improper coloring of $1$-planar graphs
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 955
EP - 968
AB - A graph $G=(V,E)$ is called improperly $(d_1, \dots , d_k)$-colorable if the vertex set $V$ can be partitioned into subsets $V_1, \dots , V_k$ such that the graph $G[V_i]$ induced by the vertices of $V_i$ has maximum degree at most $d_i$ for all $1 \le i \le k$. In this paper, we mainly study the improper coloring of $1$-planar graphs and show that $1$-planar graphs with girth at least $7$ are $(2,0,0,0)$-colorable.
LA - eng
KW - improper coloring; 1-planar graph; discharging method
UR - http://eudml.org/doc/294871
ER -
References
top- Appel, K., Haken, W., 10.1215/ijm/1256049898, Ill. J. Math. 20 (1976), 218-297. (1976) Zbl0322.05141MR0392641DOI10.1215/ijm/1256049898
- Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, North-Holland, New York (1976). (1976) MR0411988
- Borodin, O. V., Solution of Ringel's problems concerning the vertex-faced coloring of planar graphs and the coloring of 1-planar graphs, Metody Diskretn. Anal. 41 Russian (1984), 12-26. (1984) Zbl0565.05027MR0832128
- Borodin, O. V., 10.1002/jgt.3190190406, J. Graph Theory 19 (1995), 507-521. (1995) Zbl0826.05027MR1333779DOI10.1002/jgt.3190190406
- Borodin, O. V., Kostochka, A. V., 10.1016/j.jctb.2013.10.002, J. Comb. Theory, Ser. B 104 (2014), 72-80. (2014) Zbl1282.05041MR3132745DOI10.1016/j.jctb.2013.10.002
- Borodin, O. V., Kostochka, A. V., Raspaud, A., Sopena, E., 10.1016/S0166-218X(00)00359-0, Discrete Appl. Math. 114 (2001), 29-41. (2001) Zbl0996.05053MR1865580DOI10.1016/S0166-218X(00)00359-0
- Borodin, O. V., Kostochka, A., Yancey, M., 10.1016/j.disc.2013.07.014, Discrete Math. 313 (2013), 2638-2649. (2013) Zbl1281.05060MR3095439DOI10.1016/j.disc.2013.07.014
- Chang, G., Havet, F., Montassier, M., Raspaud, A., Steinberg's conjecture and near colorings, Available at http://hal.inria.fr/inria-00605810/en/.
- Chen, Z.-Z., Kouno, M., 10.1007/s00453-004-1134-x, Algorithmica 43 (2005), 147-177. (2005) Zbl1082.05084MR2172321DOI10.1007/s00453-004-1134-x
- Chen, M., Wang, Y., Liu, P., Xu, J., 10.1016/j.disc.2015.10.029, Discrete Math. 339 (2016), 886-905. (2016) Zbl1327.05073MR3431403DOI10.1016/j.disc.2015.10.029
- Cohen-Addad, V., Hebdige, M., Král', D., Li, Z., Salgado, E., 10.1016/j.jctb.2016.07.006, J. Comb. Theory, Ser. B 122 (2017), 452-456. (2017) Zbl1350.05018MR3575214DOI10.1016/j.jctb.2016.07.006
- Fabrici, I., Madaras, T., 10.1016/j.disc.2005.11.056, Discrete Math. 307 (2007), 854-865. (2007) Zbl1111.05026MR2297168DOI10.1016/j.disc.2005.11.056
- Hudák, D., Madaras, T., 10.7151/dmgt.1454, Discuss. Math., Graph Theory 29 (2009), 385-400. (2009) Zbl1194.05025MR2574477DOI10.7151/dmgt.1454
- Hudák, D., Madaras, T., 10.26493/1855-3974.131.91c, Ars Math. Contemp. 4 (2011), 245-254. (2011) Zbl1237.05053MR2802062DOI10.26493/1855-3974.131.91c
- Ringel, G., 10.1007/BF02996313, Abh. Math. Semin. Univ. Hamb. 29 German (1965), 107-117. (1965) Zbl0132.20701MR0187232DOI10.1007/BF02996313
- Song, W.-Y., Miao, L.-Y., Zhang, S.-J., List edge and list total coloring of triangle-free 1-planar graphs, J. East China Norm. Univ. Natur. Sci. Ed. (2014), 40-44. (2014) MR3243188
- Suzuki, Y., 10.1016/j.disc.2009.07.016, Discrete Math. 310 (2010), 6-11. (2010) Zbl1188.05056MR2558962DOI10.1016/j.disc.2009.07.016
- Zhang, X., Liu, G., 10.1016/j.ipl.2011.10.021, Inf. Process. Lett. 112 (2012), 138-142. (2012) Zbl1239.05078MR2876230DOI10.1016/j.ipl.2011.10.021
- Zhang, X., Liu, G., On edge colorings of 1-planar graphs without chordal 5-cycles, Ars Comb. 104 (2012), 431-436. (2012) Zbl1274.05186MR2951804
- Zhang, X., Liu, G. Z., Wu, J. L., Edge coloring of triangle-free 1-planar graphs, J. Shandong Univ., Nat. Sci. 45 Chinese (2010), 15-17. (2010) Zbl1240.05125MR2778949
- Zhang, X., Wu, J., Liu, G., 10.1007/s11464-012-0184-7, Front. Math. China 7 (2012), 1005-1018. (2012) Zbl1254.05050MR2965951DOI10.1007/s11464-012-0184-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.