Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system

Radim Hošek; Václav Mácha

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 3, page 837-851
  • ISSN: 0011-4642

Abstract

top
The coupled Navier-Stokes/Allen-Cahn system is a simple model to describe phase separation in two-component systems interacting with an incompressible fluid flow. We demonstrate the weak-strong uniqueness result for this system in a bounded domain in three spatial dimensions which implies that when a strong solution exists, then a weak solution emanating from the same data coincides with the strong solution on its whole life span. The proof of given assertion relies on a form of a relative entropy method.

How to cite

top

Hošek, Radim, and Mácha, Václav. "Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system." Czechoslovak Mathematical Journal 69.3 (2019): 837-851. <http://eudml.org/doc/294873>.

@article{Hošek2019,
abstract = {The coupled Navier-Stokes/Allen-Cahn system is a simple model to describe phase separation in two-component systems interacting with an incompressible fluid flow. We demonstrate the weak-strong uniqueness result for this system in a bounded domain in three spatial dimensions which implies that when a strong solution exists, then a weak solution emanating from the same data coincides with the strong solution on its whole life span. The proof of given assertion relies on a form of a relative entropy method.},
author = {Hošek, Radim, Mácha, Václav},
journal = {Czechoslovak Mathematical Journal},
keywords = {Allen-Cahn system; weak-strong uniqueness},
language = {eng},
number = {3},
pages = {837-851},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system},
url = {http://eudml.org/doc/294873},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Hošek, Radim
AU - Mácha, Václav
TI - Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 837
EP - 851
AB - The coupled Navier-Stokes/Allen-Cahn system is a simple model to describe phase separation in two-component systems interacting with an incompressible fluid flow. We demonstrate the weak-strong uniqueness result for this system in a bounded domain in three spatial dimensions which implies that when a strong solution exists, then a weak solution emanating from the same data coincides with the strong solution on its whole life span. The proof of given assertion relies on a form of a relative entropy method.
LA - eng
KW - Allen-Cahn system; weak-strong uniqueness
UR - http://eudml.org/doc/294873
ER -

References

top
  1. Březina, J., Kreml, O., Mácha, V., 10.1007/s00021-016-0301-6, J. Math. Fluid Mech. 19 (2017), 659-683. (2017) Zbl1386.35335MR3714498DOI10.1007/s00021-016-0301-6
  2. Dafermos, C. M., 10.1007/BF00250353, Arch. Ration. Mech. Anal. 70 (1979), 167-179. (1979) Zbl0448.73004MR0546634DOI10.1007/BF00250353
  3. Ducomet, B., Nečasová, Š., 10.1007/s11565-014-0214-3, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 61 (2015), 17-59. (2015) Zbl1331.35276MR3343442DOI10.1007/s11565-014-0214-3
  4. Feireisl, E., Jin, B. J., Novotný, A., 10.3233/ASY-141231, Asymptotic Anal. 89 (2014), 307-329. (2014) Zbl1304.35540MR3266143DOI10.3233/ASY-141231
  5. Feireisl, E., Klein, R., Novotný, A., Zatorska, E., 10.1142/S021820251650007X, Math. Models Methods Appl. Sci. 26 (2016), 419-443. (2016) Zbl1339.35210MR3458246DOI10.1142/S021820251650007X
  6. Feireisl, E., Novotný, A., 10.1007/s00205-011-0490-3, Arch. Ration. Mech. Anal. 204 (2012), 683-706. (2012) Zbl1285.76034MR2909912DOI10.1007/s00205-011-0490-3
  7. Lin, F.-H., Liu, C., 10.1002/cpa.3160480503, Commun. Pure Appl. Math. 48 (1995), 501-537. (1995) Zbl0842.35084MR1329830DOI10.1002/cpa.3160480503
  8. Sohr, H., 10.1007/978-3-0348-8255-2, Birkhäuser Advanced Texts, Birkhäuser, Basel (2001). (2001) Zbl0983.35004MR1928881DOI10.1007/978-3-0348-8255-2
  9. Zhao, L., Guo, B., Huang, H., 10.1016/j.jmaa.2011.05.042, J. Math. Anal. Appl. 384 (2011), 232-245. (2011) Zbl1231.35185MR2825177DOI10.1016/j.jmaa.2011.05.042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.