Extremal properties of distance-based graph invariants for -trees
Mathematica Bohemica (2018)
- Volume: 143, Issue: 1, page 41-66
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topZhang, Minjie, and Li, Shuchao. "Extremal properties of distance-based graph invariants for $k$-trees." Mathematica Bohemica 143.1 (2018): 41-66. <http://eudml.org/doc/294875>.
@article{Zhang2018,
abstract = {Sharp bounds on some distance-based graph invariants of $n$-vertex $k$-trees are established in a unified approach, which may be viewed as the weighted Wiener index or weighted Harary index. The main techniques used in this paper are graph transformations and mathematical induction. Our results demonstrate that among $k$-trees with $n$ vertices the extremal graphs with the maximal and the second maximal reciprocal sum-degree distance are coincident with graphs having the maximal and the second maximal reciprocal product-degree distance (and similarly, the extremal graphs with the minimal and the second minimal degree distance are coincident with graphs having the minimal and the second minimal eccentricity distance sum).},
author = {Zhang, Minjie, Li, Shuchao},
journal = {Mathematica Bohemica},
keywords = {distance-based graph invariant; $k$-tree; simplicial vertex; sharp bound},
language = {eng},
number = {1},
pages = {41-66},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extremal properties of distance-based graph invariants for $k$-trees},
url = {http://eudml.org/doc/294875},
volume = {143},
year = {2018},
}
TY - JOUR
AU - Zhang, Minjie
AU - Li, Shuchao
TI - Extremal properties of distance-based graph invariants for $k$-trees
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 1
SP - 41
EP - 66
AB - Sharp bounds on some distance-based graph invariants of $n$-vertex $k$-trees are established in a unified approach, which may be viewed as the weighted Wiener index or weighted Harary index. The main techniques used in this paper are graph transformations and mathematical induction. Our results demonstrate that among $k$-trees with $n$ vertices the extremal graphs with the maximal and the second maximal reciprocal sum-degree distance are coincident with graphs having the maximal and the second maximal reciprocal product-degree distance (and similarly, the extremal graphs with the minimal and the second minimal degree distance are coincident with graphs having the minimal and the second minimal eccentricity distance sum).
LA - eng
KW - distance-based graph invariant; $k$-tree; simplicial vertex; sharp bound
UR - http://eudml.org/doc/294875
ER -
References
top- Ali, P., Mukwembi, S., Munyira, S., 10.1016/j.dam.2013.06.033, Discrete Appl. Math. 161 (2013), 2802-2811. (2013) Zbl1287.05075MR3126647DOI10.1016/j.dam.2013.06.033
- Alizadeh, Y., Iranmanesh, A., Došlić, T., 10.1016/j.disc.2012.09.011, Discrete Math. 313 (2013), 26-34. (2013) Zbl1254.05191MR3016970DOI10.1016/j.disc.2012.09.011
- Andrew, G. D., Gessel, I. M., 10.1016/j.jcta.2014.05.002, J. Combin. Theory Ser. A 126 (2014), 177-193. (2014) Zbl1295.05078MR3213312DOI10.1016/j.jcta.2014.05.002
- Azari, M., Iranmanesh, A., 10.1016/j.dam.2013.06.003, Discrete Appl. Math. 161 (2013), 2827-2840. (2013) Zbl1287.05034MR3126649DOI10.1016/j.dam.2013.06.003
- Azari, M., Iranmanesh, A., Harary index of some nano-structures, MATCH Commun. Math. Comput. Chem. 71 (2014), 373-382. (2014) Zbl06704591MR3184558
- Beineke, L. W., Pippert, R. E., 10.1016/S0021-9800(69)80120-1, J. Comb. Theory 6 (1969), 200-205. (1969) Zbl0175.20904MR0234868DOI10.1016/S0021-9800(69)80120-1
- Bondy, J. A., Murty, U. S. R., Graph Theory, Graduate Texts in Mathematics 244. Springer, Berlin (2008). (2008) Zbl1134.05001MR2368647
- Bucicovschi, O., Cioabă, S. M., 10.1016/j.dam.2008.03.036, Discrete Appl. Math. 156 (2008), 3518-3521. (2008) Zbl1168.05308MR2467964DOI10.1016/j.dam.2008.03.036
- Deng, H., Krishnakumari, B., Venkatakrishnan, Y. B., Balachandran, S., 10.1007/s10878-013-9698-5, J. Comb. Optim. 30 (2015), 1125-1137. (2015) Zbl1327.05067MR3411783DOI10.1007/s10878-013-9698-5
- Dobrynin, A. A., Entringer, R., Gutman, I., 10.1023/A:1010767517079, Acta Appl. Math. 66 (2001), 211-249. (2001) Zbl0982.05044MR1843259DOI10.1023/A:1010767517079
- Dobrynin, A. A., Kochetova, A. A., 10.1021/ci00021a008, J. Chem. Inf. Comput. Sci. 34 (1994), 1082-1086. (1994) DOI10.1021/ci00021a008
- Estes, J., Wei, B., 10.1007/s10878-012-9515-6, J. Comb. Optim. 27 (2014), 271-291. (2014) Zbl1318.90070MR3153716DOI10.1007/s10878-012-9515-6
- Geng, X., Li, S., Zhang, M., 10.1016/j.dam.2013.05.023, Discrete Appl. Math. 161 (2013), 2427-2439. (2013) Zbl1285.05099MR3101723DOI10.1016/j.dam.2013.05.023
- Gupta, S., Singh, M., Madan, A. K., 10.1016/S0022-247X(02)00373-6, J. Math. Anal. Appl. 275 (2002), 386-401. (2002) Zbl1005.92011MR1941791DOI10.1016/S0022-247X(02)00373-6
- Gutman, I., A property of the Wiener number and its modifications, Indian J. Chem. A 36 (1997), 128-132. (1997)
- Gutman, I., Rada, J., Araujo, O., The Wiener index of starlike trees and a related partial order, MATCH Commun. Math. Comput. Chem. 42 (2000), 145-154. (2000) Zbl1026.05101MR1801517
- I, I. Gutman, Trinajstić, N., 10.1016/0009-2614(72)85099-1, Chem. Phys. Lett. 17 (1972), 535-538. (1972) DOI10.1016/0009-2614(72)85099-1
- Hemmasi, M., Iranmanesh, A., Tehranian, A., Computing eccentric distance sum for an infinite family of fullerenes, MATCH Commun. Math. Comput. Chem. 71 (2014), 417-424. (2014) Zbl06704595MR3184562
- Hua, H., Wang, M., On Harary index and traceable graphs, MATCH Commun. Math. Comput. Chem. 70 (2013), 297-300. (2013) Zbl1299.05091MR3136767
- Hua, H., Zhang, S., 10.1016/j.dam.2011.11.032, Discrete Appl. Math. 160 (2012), 1152-1163. (2012) Zbl1242.05060MR2901134DOI10.1016/j.dam.2011.11.032
- Ivanciuc, O., Balaban, T. S., Balaban, A. T., 10.1007/BF01164642, Applied Graph Theory and Discrete Mathematics in Chemistry. Proc. Symp., Saskatoon, 1991. Baltzer Science Publishers BV, Bussum, J. Math. Chem. (1993) P. G. Mezey et al. 309-318. MR1219579DOI10.1007/BF01164642
- Klavžar, S., Gutman, I., 10.1016/S0166-218X(97)00070-X, Discrete Appl. Math. 80 (1997), 73-81. (1997) Zbl0889.05046MR1489061DOI10.1016/S0166-218X(97)00070-X
- Klavžar, S., Nadjafi-Arani, M. J., 10.1016/j.ejc.2013.04.008, European J. Combin. 36 (2014), 71-76. (2014) Zbl1284.05118MR3131875DOI10.1016/j.ejc.2013.04.008
- Li, X.-X., Fan, Y.-Z., 10.1016/j.dam.2014.08.022, Discrete Appl. Math. 181 (2015), 167-173. (2015) Zbl1304.05037MR3284522DOI10.1016/j.dam.2014.08.022
- Li, S., Meng, X., 10.1007/s10878-013-9649-1, J. Comb. Optim. 30 (2015), 468-488. (2015) Zbl1327.05092MR3391560DOI10.1007/s10878-013-9649-1
- Li, S., Song, Y., 10.1016/j.dam.2013.12.010, Discrete Appl. Math. 169 (2014), 176-185. (2014) Zbl1288.05072MR3175067DOI10.1016/j.dam.2013.12.010
- Li, S., Wu, Y., 10.1016/j.dam.2016.01.027, Discrete Appl. Math. 206 (2016), 90-99. (2016) Zbl1335.05059MR3490432DOI10.1016/j.dam.2016.01.027
- Li, S., Wu, Y., Sun, L., 10.1016/j.jmaa.2015.05.032, J. Math. Anal. Appl. 430 (2015), 1149-1162. (2015) Zbl1316.05071MR3352002DOI10.1016/j.jmaa.2015.05.032
- Maxová, J., Dubcová, M., Pavlíková, P., Turzík, D., 10.1016/j.dam.2013.11.019, Discrete Appl. Math. 167 (2014), 222-227. (2014) Zbl1284.05063MR3166121DOI10.1016/j.dam.2013.11.019
- Miao, L., Cao, Q., Cui, N., Pang, S., 10.1016/j.dam.2015.01.042, Discrete Appl. Math. 186 (2015), 199-206. (2015) Zbl1311.05054MR3325557DOI10.1016/j.dam.2015.01.042
- Mukungunugwa, V., Mukwembi, S., 10.1016/j.dam.2014.05.019, Discrete Appl. Math. 175 (2014), 55-61. (2014) Zbl1297.05076MR3223906DOI10.1016/j.dam.2014.05.019
- Mukwembi, S., Munyira, S., 10.1017/S0004972712000354, Bull. Aust. Math. Soc. 87 (2013), 255-271. (2013) Zbl1262.05040MR3040710DOI10.1017/S0004972712000354
- Panholzer, A., Seitz, G., 10.1002/rsa.20474, Random Struct. Algorithms 44 (2014), 465-489. (2014) Zbl1296.05177MR3214201DOI10.1002/rsa.20474
- Plavšić, D., Nikolić, S., Trinajstić, N., Mihalić, Z., 10.1007/BF01164638, Applied Graph Theory and Discrete Mathematics in Chemistry. Proc. Symp., Saskatoon, 1991. Baltzer Science Publishers BV, Bussum, J. Math. Chem. (1993) P. G. Mezey et al. 235-250. MR1219576DOI10.1007/BF01164638
- Song, L., Staton, W., Wei, B., 10.1016/j.dam.2010.01.002, Discrete Appl. Math. 158 (2010), 943-950. (2010) Zbl1219.05133MR2602818DOI10.1016/j.dam.2010.01.002
- Su, G., Xiong, L., Su, X., Chen, X., 10.1007/s10878-013-9645-5, J. Comb. Optim. 30 (2015), 435-446. (2015) Zbl1325.05071MR3391557DOI10.1007/s10878-013-9645-5
- Tomescu, I., Kanwal, S., Ordering connected graphs having small degree distances II, MATCH Commun. Math. Comput. Chem. 67 (2012), 425-437. (2012) Zbl1289.05147MR2951677
- Wang, X., Zhai, M., Shu, J., 10.1142/6518, Appl. Math., Ser. A 26 (2011), 209-214 Chinese. English summary. (2011) Zbl1240.05202MR2838951DOI10.1142/6518
- Wiener, H., 10.1021/ja01193a005, J. Am. Chem. Soc. 69 (1947), 17-20. (1947) DOI10.1021/ja01193a005
- Xu, K., 10.1016/j.dam.2011.08.014, Discrete Appl. Math. 160 (2012), 321-331. (2012) Zbl1237.05061MR2862338DOI10.1016/j.dam.2011.08.014
- Yu, G., Feng, L., Ilić, A., 10.1016/j.jmaa.2010.08.054, J. Math. Anal. Appl. 375 (2011), 99-107. (2011) Zbl1282.05077MR2735697DOI10.1016/j.jmaa.2010.08.054
- Zhang, M., Li, S., 10.1016/j.laa.2014.11.010, Linear Algebra Appl. 467 (2015), 136-148 corrigendum ibid. 485 527-530 2015. (2015) Zbl1304.05098MR3284805DOI10.1016/j.laa.2014.11.010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.