PID and filtered PID control design with application to a positional servo drive

Igor Bélai; Mikuláš Huba; Kevin Burn; Chris Cox

Kybernetika (2019)

  • Volume: 55, Issue: 3, page 540-560
  • ISSN: 0023-5954

Abstract

top
This paper discusses a novel approach to tuning 2DOF PID controllers for a positional control system, with a special focus on filters. It is based on the multiple real dominant pole method, applicable to both standard and series PID control. In the latter case it may be generalized by using binomial nth order filters. These offer filtering properties scalable in a much broader range than those allowed by a standard controller. It is shown that in terms of a modified total variance, controllers with higher order binomial filters allow a significant reduction of excessive control effort due to the measurement noise. When not limited by the sampling period choice, a significant performance increase may be achieved by using third order filters, which can be further boosted using higher order filters. Furthermore, all of the derived tuning procedures keep the controller design sufficiently simple so as to be attractive for industrial applications. The proposed approach is applied to the position control of electrical drives, where quantization noise can occur as a result of angular velocity reconstruction using the differentiated outputs of incremental position sensors.

How to cite

top

Bélai, Igor, et al. "PID and filtered PID control design with application to a positional servo drive." Kybernetika 55.3 (2019): 540-560. <http://eudml.org/doc/294879>.

@article{Bélai2019,
abstract = {This paper discusses a novel approach to tuning 2DOF PID controllers for a positional control system, with a special focus on filters. It is based on the multiple real dominant pole method, applicable to both standard and series PID control. In the latter case it may be generalized by using binomial nth order filters. These offer filtering properties scalable in a much broader range than those allowed by a standard controller. It is shown that in terms of a modified total variance, controllers with higher order binomial filters allow a significant reduction of excessive control effort due to the measurement noise. When not limited by the sampling period choice, a significant performance increase may be achieved by using third order filters, which can be further boosted using higher order filters. Furthermore, all of the derived tuning procedures keep the controller design sufficiently simple so as to be attractive for industrial applications. The proposed approach is applied to the position control of electrical drives, where quantization noise can occur as a result of angular velocity reconstruction using the differentiated outputs of incremental position sensors.},
author = {Bélai, Igor, Huba, Mikuláš, Burn, Kevin, Cox, Chris},
journal = {Kybernetika},
keywords = {PID control; dominant pole placement; filtering; optimization},
language = {eng},
number = {3},
pages = {540-560},
publisher = {Institute of Information Theory and Automation AS CR},
title = {PID and filtered PID control design with application to a positional servo drive},
url = {http://eudml.org/doc/294879},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Bélai, Igor
AU - Huba, Mikuláš
AU - Burn, Kevin
AU - Cox, Chris
TI - PID and filtered PID control design with application to a positional servo drive
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 3
SP - 540
EP - 560
AB - This paper discusses a novel approach to tuning 2DOF PID controllers for a positional control system, with a special focus on filters. It is based on the multiple real dominant pole method, applicable to both standard and series PID control. In the latter case it may be generalized by using binomial nth order filters. These offer filtering properties scalable in a much broader range than those allowed by a standard controller. It is shown that in terms of a modified total variance, controllers with higher order binomial filters allow a significant reduction of excessive control effort due to the measurement noise. When not limited by the sampling period choice, a significant performance increase may be achieved by using third order filters, which can be further boosted using higher order filters. Furthermore, all of the derived tuning procedures keep the controller design sufficiently simple so as to be attractive for industrial applications. The proposed approach is applied to the position control of electrical drives, where quantization noise can occur as a result of angular velocity reconstruction using the differentiated outputs of incremental position sensors.
LA - eng
KW - PID control; dominant pole placement; filtering; optimization
UR - http://eudml.org/doc/294879
ER -

References

top
  1. Aström, K. J., Wittenmark, B., Computer Controlled Systems. Theory and Design., Prentice Hall, Englewood Cliffs, N.J. 1984. MR0127569
  2. Bodson, M., Chiasson, J., Novotnak, R. T., 10.1109/41.402471, IEEE Trans. Industr. Electronics 42 (1995), 4, 337-343. DOI10.1109/41.402471
  3. Brown, R. H., Schneider, S. C., Mulligan, M. G., 10.1109/41.121906, IEEE Trans. Industr- Electronics 39 (1992), 11-19. DOI10.1109/41.121906
  4. Chu, E., Optimization and pole assignment in control system design., Int. J. Appl. Math. Computer Sci. 11 (2001), 5, 1035-1053. MR1885300
  5. Silva, L. R. da, Flesch, R. C. C., Normey-Rico, J. E., 10.1016/j.ifacol.2018.06.100, In: 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control, Ghent 2018. DOI10.1016/j.ifacol.2018.06.100
  6. D'Andrea-Novel, B., Fliess, M., Join, C., Mounier, H., Steux, B., 10.1109/med.2010.5547700, In: Proc. 18th Mediterranean Conference on Control and Automation, MED'10, 2010, pp. 395-400. DOI10.1109/med.2010.5547700
  7. Fišer, J., Zítek, P., Vyhlídal, T., 10.1016/j.ifacol.2017.08.1047, 20th IFAC World Congress, IFAC-PapersOnLine 50 (2017), 1, 6501-6506. MR3938074DOI10.1016/j.ifacol.2017.08.1047
  8. Fliess, M., Join, C., 10.1080/00207179.2013.810345, Int. J. Control 86 (2013), 12, 2228-2252. MR3172473DOI10.1080/00207179.2013.810345
  9. Fliess, M., Join, C., 10.1109/ecc.2014.6862167, In: 2014 European Control Conference (ECC), 2014, pp. 454-459. MR3356061DOI10.1109/ecc.2014.6862167
  10. Gao, Z., 10.1109/acc.2006.1656579, In: American Control Conference, 2006, pp. 2399-2405. DOI10.1109/acc.2006.1656579
  11. Gao, Z., 10.1016/j.isatra.2013.09.012, ISA Trans. 53 (2014), 10, 850-857. DOI10.1016/j.isatra.2013.09.012
  12. Han, J., 10.1109/tie.2008.2011621, IEEE Trans. Industr. Electron. 56 (2009), 3, 900-906. DOI10.1109/tie.2008.2011621
  13. Huba, M., 10.1109/iecon.2013.6699719, In: 39th Annual Conference of the IEEE Industrial Electronics Society (IECON), IEEE, Vienna 2013. DOI10.1109/iecon.2013.6699719
  14. Huba, M., 10.1109/carpathiancc.2014.6843593, In: 15th Int. Carpathian Control Conference - ICCC, Velké Karlovice 2014. DOI10.1109/carpathiancc.2014.6843593
  15. Huba, M., 10.1109/icmech.2015.7083946, In: ICM 2015, Nagoya, 2015. DOI10.1109/icmech.2015.7083946
  16. Huba, M., Pole Assignment PD Controller Tuning for Oscillatory Systems with Dead Time., In: International Conference on Innovative Technologies, IN-TECH 2015, Dubrovnik 2015. 
  17. Huba, M., Bélai, I., 10.1177/0959651818755957, ProcIMechE Part I: J. Systems Control Engrg. 232 (2018), 6, 728-741. DOI10.1177/0959651818755957
  18. Huba, M., P.Bisták, Z.Skachová, Žáková, K., 10.1142/9789814447317_0085, In: 6th IEEE Mediterranean Conference on Control and Automation 11 (1998), 514-519. DOI10.1142/9789814447317_0085
  19. Huba, M., P.Bisták, Z.Skachová, Žáková, K., 10.1142/9789814447317_0088, 6th IEEE Mediterranean Conf. 11 (1998), 532-535. DOI10.1142/9789814447317_0088
  20. Lee, J., Eun, Y., 10.1109/acc.2016.7526526, In: 2016 American Control Conference (ACC) 2016, pp. 5461-5466. DOI10.1109/acc.2016.7526526
  21. Mercader, P., Banos, A., 10.1016/j.isatra.2017.01.025, ISA Transactions 67 (2017), 246-255. DOI10.1016/j.isatra.2017.01.025
  22. Micic, A. D., Matausek, M. R., 10.1016/j.jprocont.2013.10.009, J. Process Control 24 (2014), 5, 694-700. DOI10.1016/j.jprocont.2013.10.009
  23. Oldenbourg, R. C., Sartorius, H., 10.1002/zamm.19520320221, R. Oldenbourg-Verlag, München 1944. Engl. Ed.: The dynamics of automatic controls, American Society of Mechanical Engineers, 1948. DOI10.1002/zamm.19520320221
  24. Rissanen, J., Control system synthesis by analogue computer based on generalized linear feedback concept., In: Proc. Symposium on Analog Computation Applied to the Study of Chemical Processes 1960, pp. 1-13. 
  25. Segovia, V. R., Hägglund, T., Aström, K. J., 10.1016/j.jprocont.2014.01.017, J. Process Control 24 (2014), 4, 299-313. DOI10.1016/j.jprocont.2014.01.017
  26. Skogestad, S., 10.1016/s0959-1524(02)00062-8, J. Process Control 13 (2003), 291-309. MR2091674DOI10.1016/s0959-1524(02)00062-8
  27. Vítečková, M., Víteček, A., 10.3182/20100607-3-cz-4010.00061, In: 9th IFAC Workshop on Time Delay Systems, volume 9, Praha 2010, pp. 343-348. DOI10.3182/20100607-3-cz-4010.00061
  28. Vítečková, M., Víteček, A., 10.1109/carpathiancc.2016.7501204, In: 2016 17th Int. Carpathian Control Conf. (ICCC) 2016, pp. 793-797. DOI10.1109/carpathiancc.2016.7501204
  29. Yang, Sheng-Ming, Ke, Shuenn-Jenn, 10.1109/28.821803, In: Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242), volume 3 (1998), pp. 1697-1702. DOI10.1109/28.821803
  30. Zítek, P., Fišer, J., Vyhlídal, T., 10.1016/j.jprocont.2013.06.001, J. Process Control 23 (2013), 8, 1063-1074. MR3938074DOI10.1016/j.jprocont.2013.06.001
  31. Zítek, P., Fišer, J., Vyhlídal, T., 10.1080/00207179.2017.1354398, Int. J. Control 92 (2017), 2, 329-338. MR3938074DOI10.1080/00207179.2017.1354398

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.