Boundedness in a fully parabolic chemotaxis system with signal-dependent sensitivity and logistic term

Mizukami, Masaaki

  • Proceedings of Equadiff 14, Publisher: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing(Bratislava), page 61-68

How to cite

top

Mizukami, Masaaki. "Boundedness in a fully parabolic chemotaxis system with signal-dependent sensitivity and logistic term." Proceedings of Equadiff 14. Bratislava: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing, 2017. 61-68. <http://eudml.org/doc/294883>.

@inProceedings{Mizukami2017,
abstract = {},
author = {Mizukami, Masaaki},
booktitle = {Proceedings of Equadiff 14},
keywords = {Chemotaxis; signal-dependent sensitivity; logistic term; global existence.},
location = {Bratislava},
pages = {61-68},
publisher = {Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing},
title = {Boundedness in a fully parabolic chemotaxis system with signal-dependent sensitivity and logistic term},
url = {http://eudml.org/doc/294883},
year = {2017},
}

TY - CLSWK
AU - Mizukami, Masaaki
TI - Boundedness in a fully parabolic chemotaxis system with signal-dependent sensitivity and logistic term
T2 - Proceedings of Equadiff 14
PY - 2017
CY - Bratislava
PB - Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing
SP - 61
EP - 68
AB -
KW - Chemotaxis; signal-dependent sensitivity; logistic term; global existence.
UR - http://eudml.org/doc/294883
ER -

References

top
  1. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M., Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, , Math. Models Methods Appl. Sci., 25, pp. 1663–1763, 2015. MR3351175
  2. Cao, X., Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces, , Discrete Contin. Dyn. Syst., 35, pp. 1891–1904, 2015. MR3294230
  3. Fujie, K., Boundedness in a fully parabolic chemotaxis system with singular sensitivity, , J.Math. Anal. Appl., 424, pp. 675–684, 2015. MR3286587
  4. Fujie, K., Study of reaction-diffusion systems modeling chemotaxis, , PhD thesis, Tokyo University of Science, 2016. 
  5. Fujie, K., Senba, T., Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity, , Nonlinearity, 29, pp. 2417–2450, 2016. MR3538418
  6. Fujie, K., Senba, T., A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system, , preprint. MR3816648
  7. He, X., Zheng, S., Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source, , J. Math. Anal. Appl., 436, pp. 970–982, 2016. MR3446989
  8. Horstmann, D., Wang, G., Blow-up in a chemotaxis model without symmetry assumptions, , Eur. J. Appl. Math., 12, pp. 159–177, 2001. MR1931303
  9. Lankeit, J., A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, , Math. Methods Appl. Sci., 39, pp. 394–404, 2016. MR3454184
  10. Lankeit, J., Winkler, M., A generalized solution concept for the Keller–Segel system with logarithmic sensitivity: global solvability for large nonradial data, , NoDEA, Nonlinear Differ. Equ. Appl., 24, No. 4, Paper No. 49, 33 p., 2017. MR3674184
  11. Mizukami, M., Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, , Discrete Contin. Dyn. Syst. Ser. B, 22, pp. 2301–2319, 2017. MR3664704
  12. Mizukami, M., Improvement of conditions for asymptotic stability in a two-species chemotaxis competition model with signal-dependent sensitivity, , submitted, arXiv:1706.04774[math.AP]. MR3664704
  13. Mizukami, M., Yokota, T., Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion, , J. Differential Equations, 261, pp. 2650–2669, 2016. MR3507983
  14. Mizukami, M., Yokota, T., A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity, , Math. Nachr., to appear. MR3722501
  15. Nagai, T., Senba, T., Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, , Funkcial. Ekvac., 40, pp. 411–433, 1997. MR1610709
  16. Negreanu, M., Tello, J. I., On a two species chemotaxis model with slow chemical diffusion, , SIAM J. Math. Anal., 46, pp. 3761–3781, 2014. MR3277217
  17. Negreanu, M., Tello, J. I., Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, , J. Differential Equations, 258, pp. 1592–1617, 2015. MR3295594
  18. Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, , J. Differential Equations, 248, pp. 2889–2905, 2010. MR2644137
  19. Winkler, M., Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, , J. Differential Equations, 257, pp. 1056–1077, 2014. MR3210023
  20. Zhang, Q., Li, X., Global existence and asymptotic properties of the solution to a two-species chemotaxis system, , J. Math. Anal. Appl., 418, pp. 47–63, 2014. MR3198865

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.