Global strong solutions of a 2-D new magnetohydrodynamic system

Ruikuan Liu; Jiayan Yang

Applications of Mathematics (2020)

  • Volume: 65, Issue: 1, page 105-120
  • ISSN: 0862-7940

Abstract

top
The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional space. Based on Agmon, Douglis, and Nirenberg’s estimates for the stationary Stokes equation and Solonnikov’s theorem on L p - L q -estimates for the evolution Stokes equation, it is shown that this coupled magnetohydrodynamic equations possesses a global strong solution. In addition, the uniqueness of the global strong solution is obtained.

How to cite

top

Liu, Ruikuan, and Yang, Jiayan. "Global strong solutions of a 2-D new magnetohydrodynamic system." Applications of Mathematics 65.1 (2020): 105-120. <http://eudml.org/doc/295010>.

@article{Liu2020,
abstract = {The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional space. Based on Agmon, Douglis, and Nirenberg’s estimates for the stationary Stokes equation and Solonnikov’s theorem on $L^p$-$L^q$-estimates for the evolution Stokes equation, it is shown that this coupled magnetohydrodynamic equations possesses a global strong solution. In addition, the uniqueness of the global strong solution is obtained.},
author = {Liu, Ruikuan, Yang, Jiayan},
journal = {Applications of Mathematics},
keywords = {global strong solution; magnetohydrodynamics; Stokes equation; $L^p$-$L^q$-estimates},
language = {eng},
number = {1},
pages = {105-120},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global strong solutions of a 2-D new magnetohydrodynamic system},
url = {http://eudml.org/doc/295010},
volume = {65},
year = {2020},
}

TY - JOUR
AU - Liu, Ruikuan
AU - Yang, Jiayan
TI - Global strong solutions of a 2-D new magnetohydrodynamic system
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 105
EP - 120
AB - The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional space. Based on Agmon, Douglis, and Nirenberg’s estimates for the stationary Stokes equation and Solonnikov’s theorem on $L^p$-$L^q$-estimates for the evolution Stokes equation, it is shown that this coupled magnetohydrodynamic equations possesses a global strong solution. In addition, the uniqueness of the global strong solution is obtained.
LA - eng
KW - global strong solution; magnetohydrodynamics; Stokes equation; $L^p$-$L^q$-estimates
UR - http://eudml.org/doc/295010
ER -

References

top
  1. Agmon, S., Douglis, A., Nirenberg, L., 10.1002/cpa.3160170104, Commun. Pure Appl. Math. 17 (1964), 35-92. (1964) Zbl0123.28706MR0162050DOI10.1002/cpa.3160170104
  2. Amrouche, C., Girault, V., 10.21136/CMJ.1994.128452, Czech. Math. J. 44 (1994), 109-140. (1994) Zbl0823.35140MR1257940DOI10.21136/CMJ.1994.128452
  3. Cao, C., Wu, J., 10.1016/j.aim.2010.08.017, Adv. Math. 226 (2011), 1803-1822. (2011) Zbl1213.35159MR2737801DOI10.1016/j.aim.2010.08.017
  4. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, International Series of Monographs on Physics, Clarendon Press, Oxford (1961). (1961) Zbl0142.44103MR0128226
  5. Duvaut, G., Lions, J. L., 10.1007/BF00250512, Arch. Ration. Mech. Anal. 46 (1972), 241-279 French. (1972) Zbl0264.73027MR0346289DOI10.1007/BF00250512
  6. Geissert, M., Hess, M., Hieber, M., Schwarz, C., Stavrakidis, K., 10.1007/s00021-008-0275-0, J. Math. Fluid Mech. 12 (2010), 47-60. (2010) Zbl1261.35120MR2602914DOI10.1007/s00021-008-0275-0
  7. He, C., Xin, Z., 10.1016/j.jde.2004.07.002, J. Differ. Equations 213 (2005), 235-254. (2005) Zbl1072.35154MR2142366DOI10.1016/j.jde.2004.07.002
  8. Huang, X., Wang, Y., 10.1016/j.jde.2012.08.029, J. Differ. Equations 254 (2013), 511-527. (2013) Zbl1253.35121MR2990041DOI10.1016/j.jde.2012.08.029
  9. Jiu, Q., Niu, D., Wu, J., Xu, X., Yu, H., 10.1088/0951-7715/28/11/3935, Nonlinearity 28 (2015), 3935-3955. (2015) Zbl1328.76076MR3424899DOI10.1088/0951-7715/28/11/3935
  10. Liu, R., Wang, Q., 10.1016/j.physd.2019.03.001, Physica D 392 (2019), 17-33. (2019) MR3928313DOI10.1016/j.physd.2019.03.001
  11. Liu, R., Yang, J., 10.1007/s00033-017-0861-1, Z. Angew. Math. Phys. 68 (2017), Article number 114, 15 pages. (2017) Zbl1386.76191MR3704274DOI10.1007/s00033-017-0861-1
  12. Ma, T., Theory and Method of Partial Differential Equation, Science Press, Beijing (2011), Chinese. (2011) 
  13. Ma, T., Wang, S., 10.1007/978-1-4614-8963-4, Springer, New York (2014). (2014) Zbl1285.82004MR3154868DOI10.1007/978-1-4614-8963-4
  14. Masmoudi, N., 10.1016/j.matpur.2009.08.007, J. Math. Pures Appl. (9) 93 (2010), 559-571. (2010) Zbl1192.35133MR2651981DOI10.1016/j.matpur.2009.08.007
  15. Regmi, D., 10.1016/j.na.2016.07.002, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 144 (2016), 157-164. (2016) Zbl1348.35196MR3534099DOI10.1016/j.na.2016.07.002
  16. Ren, X., Wu, J., Xiang, Z., Zhang, Z., 10.1016/j.jfa.2014.04.020, J. Funct. Anal. 267 (2014), 503-541. (2014) Zbl1295.35104MR3210038DOI10.1016/j.jfa.2014.04.020
  17. Sengul, T., Wang, S., 10.3934/cpaa.2014.13.2609, Commun. Pure Appl. Anal. 13 (2014), 2609-2639. (2014) Zbl1305.76130MR3248406DOI10.3934/cpaa.2014.13.2609
  18. Sermange, M., Temam, R., 10.1002/cpa.3160360506, Commun. Pure Appl. Math. 36 (1983), 635-664. (1983) Zbl0524.76099MR0716200DOI10.1002/cpa.3160360506
  19. Solonnikov, V. A., 10.1007/BF01084616, J. Sov. Math. 8 (1977), 467-529. (1977) Zbl0404.35081DOI10.1007/BF01084616
  20. Temam, R., 10.1090/chel/343, American Mathematical Society, Providence (2001). (2001) Zbl0981.35001MR1846644DOI10.1090/chel/343
  21. Vialov, V., 10.1007/s00021-014-0184-3, J. Math. Fluid Mech. 16 (2014), 745-769. (2014) Zbl1308.35228MR3267547DOI10.1007/s00021-014-0184-3
  22. Wang, Q., 10.3934/dcdsb.2014.19.543, Discrete Contin. Dyn. Syst., Ser. B. 19 (2014), 543-563. (2014) Zbl1292.76078MR3170198DOI10.3934/dcdsb.2014.19.543
  23. Wang, T., 10.1016/j.nonrwa.2016.01.011, Nonlinear Anal., Real World Appl. 31 (2016), 100-118. (2016) Zbl1338.35088MR3490834DOI10.1016/j.nonrwa.2016.01.011
  24. Wu, J., 10.1016/j.jde.2003.07.007, J. Differ. Equations 195 (2003), 284-312. (2003) Zbl1057.35040MR2016814DOI10.1016/j.jde.2003.07.007
  25. Yamazaki, K., 10.1016/j.na.2015.04.006, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 122 (2015), 176-191. (2015) Zbl1319.35201MR3348070DOI10.1016/j.na.2015.04.006
  26. Zhong, X., 10.1016/j.jmaa.2016.09.012, J. Math. Anal. Appl. 446 (2017), 707-729. (2017) Zbl1352.35133MR3554752DOI10.1016/j.jmaa.2016.09.012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.