Global strong solutions of a 2-D new magnetohydrodynamic system
Applications of Mathematics (2020)
- Volume: 65, Issue: 1, page 105-120
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLiu, Ruikuan, and Yang, Jiayan. "Global strong solutions of a 2-D new magnetohydrodynamic system." Applications of Mathematics 65.1 (2020): 105-120. <http://eudml.org/doc/295010>.
@article{Liu2020,
abstract = {The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional space. Based on Agmon, Douglis, and Nirenberg’s estimates for the stationary Stokes equation and Solonnikov’s theorem on $L^p$-$L^q$-estimates for the evolution Stokes equation, it is shown that this coupled magnetohydrodynamic equations possesses a global strong solution. In addition, the uniqueness of the global strong solution is obtained.},
author = {Liu, Ruikuan, Yang, Jiayan},
journal = {Applications of Mathematics},
keywords = {global strong solution; magnetohydrodynamics; Stokes equation; $L^p$-$L^q$-estimates},
language = {eng},
number = {1},
pages = {105-120},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global strong solutions of a 2-D new magnetohydrodynamic system},
url = {http://eudml.org/doc/295010},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Liu, Ruikuan
AU - Yang, Jiayan
TI - Global strong solutions of a 2-D new magnetohydrodynamic system
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 105
EP - 120
AB - The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional space. Based on Agmon, Douglis, and Nirenberg’s estimates for the stationary Stokes equation and Solonnikov’s theorem on $L^p$-$L^q$-estimates for the evolution Stokes equation, it is shown that this coupled magnetohydrodynamic equations possesses a global strong solution. In addition, the uniqueness of the global strong solution is obtained.
LA - eng
KW - global strong solution; magnetohydrodynamics; Stokes equation; $L^p$-$L^q$-estimates
UR - http://eudml.org/doc/295010
ER -
References
top- Agmon, S., Douglis, A., Nirenberg, L., 10.1002/cpa.3160170104, Commun. Pure Appl. Math. 17 (1964), 35-92. (1964) Zbl0123.28706MR0162050DOI10.1002/cpa.3160170104
- Amrouche, C., Girault, V., 10.21136/CMJ.1994.128452, Czech. Math. J. 44 (1994), 109-140. (1994) Zbl0823.35140MR1257940DOI10.21136/CMJ.1994.128452
- Cao, C., Wu, J., 10.1016/j.aim.2010.08.017, Adv. Math. 226 (2011), 1803-1822. (2011) Zbl1213.35159MR2737801DOI10.1016/j.aim.2010.08.017
- Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, International Series of Monographs on Physics, Clarendon Press, Oxford (1961). (1961) Zbl0142.44103MR0128226
- Duvaut, G., Lions, J. L., 10.1007/BF00250512, Arch. Ration. Mech. Anal. 46 (1972), 241-279 French. (1972) Zbl0264.73027MR0346289DOI10.1007/BF00250512
- Geissert, M., Hess, M., Hieber, M., Schwarz, C., Stavrakidis, K., 10.1007/s00021-008-0275-0, J. Math. Fluid Mech. 12 (2010), 47-60. (2010) Zbl1261.35120MR2602914DOI10.1007/s00021-008-0275-0
- He, C., Xin, Z., 10.1016/j.jde.2004.07.002, J. Differ. Equations 213 (2005), 235-254. (2005) Zbl1072.35154MR2142366DOI10.1016/j.jde.2004.07.002
- Huang, X., Wang, Y., 10.1016/j.jde.2012.08.029, J. Differ. Equations 254 (2013), 511-527. (2013) Zbl1253.35121MR2990041DOI10.1016/j.jde.2012.08.029
- Jiu, Q., Niu, D., Wu, J., Xu, X., Yu, H., 10.1088/0951-7715/28/11/3935, Nonlinearity 28 (2015), 3935-3955. (2015) Zbl1328.76076MR3424899DOI10.1088/0951-7715/28/11/3935
- Liu, R., Wang, Q., 10.1016/j.physd.2019.03.001, Physica D 392 (2019), 17-33. (2019) MR3928313DOI10.1016/j.physd.2019.03.001
- Liu, R., Yang, J., 10.1007/s00033-017-0861-1, Z. Angew. Math. Phys. 68 (2017), Article number 114, 15 pages. (2017) Zbl1386.76191MR3704274DOI10.1007/s00033-017-0861-1
- Ma, T., Theory and Method of Partial Differential Equation, Science Press, Beijing (2011), Chinese. (2011)
- Ma, T., Wang, S., 10.1007/978-1-4614-8963-4, Springer, New York (2014). (2014) Zbl1285.82004MR3154868DOI10.1007/978-1-4614-8963-4
- Masmoudi, N., 10.1016/j.matpur.2009.08.007, J. Math. Pures Appl. (9) 93 (2010), 559-571. (2010) Zbl1192.35133MR2651981DOI10.1016/j.matpur.2009.08.007
- Regmi, D., 10.1016/j.na.2016.07.002, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 144 (2016), 157-164. (2016) Zbl1348.35196MR3534099DOI10.1016/j.na.2016.07.002
- Ren, X., Wu, J., Xiang, Z., Zhang, Z., 10.1016/j.jfa.2014.04.020, J. Funct. Anal. 267 (2014), 503-541. (2014) Zbl1295.35104MR3210038DOI10.1016/j.jfa.2014.04.020
- Sengul, T., Wang, S., 10.3934/cpaa.2014.13.2609, Commun. Pure Appl. Anal. 13 (2014), 2609-2639. (2014) Zbl1305.76130MR3248406DOI10.3934/cpaa.2014.13.2609
- Sermange, M., Temam, R., 10.1002/cpa.3160360506, Commun. Pure Appl. Math. 36 (1983), 635-664. (1983) Zbl0524.76099MR0716200DOI10.1002/cpa.3160360506
- Solonnikov, V. A., 10.1007/BF01084616, J. Sov. Math. 8 (1977), 467-529. (1977) Zbl0404.35081DOI10.1007/BF01084616
- Temam, R., 10.1090/chel/343, American Mathematical Society, Providence (2001). (2001) Zbl0981.35001MR1846644DOI10.1090/chel/343
- Vialov, V., 10.1007/s00021-014-0184-3, J. Math. Fluid Mech. 16 (2014), 745-769. (2014) Zbl1308.35228MR3267547DOI10.1007/s00021-014-0184-3
- Wang, Q., 10.3934/dcdsb.2014.19.543, Discrete Contin. Dyn. Syst., Ser. B. 19 (2014), 543-563. (2014) Zbl1292.76078MR3170198DOI10.3934/dcdsb.2014.19.543
- Wang, T., 10.1016/j.nonrwa.2016.01.011, Nonlinear Anal., Real World Appl. 31 (2016), 100-118. (2016) Zbl1338.35088MR3490834DOI10.1016/j.nonrwa.2016.01.011
- Wu, J., 10.1016/j.jde.2003.07.007, J. Differ. Equations 195 (2003), 284-312. (2003) Zbl1057.35040MR2016814DOI10.1016/j.jde.2003.07.007
- Yamazaki, K., 10.1016/j.na.2015.04.006, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 122 (2015), 176-191. (2015) Zbl1319.35201MR3348070DOI10.1016/j.na.2015.04.006
- Zhong, X., 10.1016/j.jmaa.2016.09.012, J. Math. Anal. Appl. 446 (2017), 707-729. (2017) Zbl1352.35133MR3554752DOI10.1016/j.jmaa.2016.09.012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.