Inverse eigenvalue problem for constructing a kind of acyclic matrices with two eigenpairs
Maryam Babaei Zarch; Seyed Abolfazl Shahzadeh Fazeli; Seyed Mehdi Karbassi
Applications of Mathematics (2020)
- Volume: 65, Issue: 1, page 89-103
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBabaei Zarch, Maryam, Shahzadeh Fazeli, Seyed Abolfazl, and Karbassi, Seyed Mehdi. "Inverse eigenvalue problem for constructing a kind of acyclic matrices with two eigenpairs." Applications of Mathematics 65.1 (2020): 89-103. <http://eudml.org/doc/295017>.
@article{BabaeiZarch2020,
abstract = {We investigate an inverse eigenvalue problem for constructing a special kind of acyclic matrices. The problem involves the reconstruction of the matrices whose graph is an $m$-centipede. This is done by using the $(2m-1)$st and $(2m)$th eigenpairs of their leading principal submatrices. To solve this problem, the recurrence relations between leading principal submatrices are used.},
author = {Babaei Zarch, Maryam, Shahzadeh Fazeli, Seyed Abolfazl, Karbassi, Seyed Mehdi},
journal = {Applications of Mathematics},
keywords = {inverse eigenvalue problem; leading principal submatrices; graph of a matrix; eigenpair},
language = {eng},
number = {1},
pages = {89-103},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inverse eigenvalue problem for constructing a kind of acyclic matrices with two eigenpairs},
url = {http://eudml.org/doc/295017},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Babaei Zarch, Maryam
AU - Shahzadeh Fazeli, Seyed Abolfazl
AU - Karbassi, Seyed Mehdi
TI - Inverse eigenvalue problem for constructing a kind of acyclic matrices with two eigenpairs
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 89
EP - 103
AB - We investigate an inverse eigenvalue problem for constructing a special kind of acyclic matrices. The problem involves the reconstruction of the matrices whose graph is an $m$-centipede. This is done by using the $(2m-1)$st and $(2m)$th eigenpairs of their leading principal submatrices. To solve this problem, the recurrence relations between leading principal submatrices are used.
LA - eng
KW - inverse eigenvalue problem; leading principal submatrices; graph of a matrix; eigenpair
UR - http://eudml.org/doc/295017
ER -
References
top- Andrade, E., Gomes, H., Robbiano, M., Spectra and Randić spectra of caterpillar graphs and applications to the energy, MATCH Commun. Math. Comput. Chem. 77 (2017), 61-75. (2017) MR3645367
- Bu, C., Zhou, J., Li, H., 10.2298/FIL1206123B, Filomat 26 (2012), 1123-1131. (2012) Zbl1289.05271MR3099573DOI10.2298/FIL1206123B
- Chu, M. T., Golub, G. H., 10.1093/acprof:oso/9780198566649.001.0001, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2005). (2005) Zbl1075.65058MR2263317DOI10.1093/acprof:oso/9780198566649.001.0001
- Duarte, A. L., 10.1016/0024-3795(89)90295-4, Linear Algebra Appl. 113 (1989), 173-182. (1989) Zbl0661.15024MR0978591DOI10.1016/0024-3795(89)90295-4
- Elhay, S., Gladwell, G. M. L., Golub, G. H., Ram, Y. M., 10.1137/S089547989631072X, SIAM J. Matrix Anal. Appl. 20 (1999), 563-574. (1999) Zbl0929.15008MR1685042DOI10.1137/S089547989631072X
- Ghanbari, K., Parvizpour, F., 10.1016/j.laa.2012.05.020, Linear Algebra Appl. 437 (2012), 2056-2063. (2012) Zbl1262.15017MR2950471DOI10.1016/j.laa.2012.05.020
- Hogben, L., 10.13001/1081-3810.1174, Electron. J. Linear Algebra 14 (2005), 12-31. (2005) Zbl1162.05333MR2202430DOI10.13001/1081-3810.1174
- Monfared, K. H., Shader, B. L., 10.1016/j.laa.2013.01.036, Linear Algebra Appl. 438 (2013), 4348-4358. (2013) Zbl1282.05141MR3034535DOI10.1016/j.laa.2013.01.036
- Nair, R., Shader, B. L., 10.1016/j.laa.2012.08.029, Linear Algebra Appl. 438 (2013), 4075-4089. (2013) Zbl1282.05142MR3034516DOI10.1016/j.laa.2012.08.029
- Nylen, P., Uhlig, F., 10.1016/S0024-3795(96)00316-3, Linear Algebra Appl. 254 (1997), 409-425. (1997) Zbl0879.15007MR1436689DOI10.1016/S0024-3795(96)00316-3
- Peng, J., Hu, X.-Y., Zhang, L., 10.1016/j.laa.2005.11.017, Linear Algebra Appl. 416 (2006), 336-347. (2006) Zbl1097.65053MR2242733DOI10.1016/j.laa.2005.11.017
- Pickmann, H., Egaña, J., Soto, R. L., 10.1016/j.laa.2007.07.020, Linear Algebra Appl. 427 (2007), 256-271. (2007) Zbl1144.65026MR2351358DOI10.1016/j.laa.2007.07.020
- Pivovarchik, V., Rozhenko, N., Tretter, C., 10.1016/j.laa.2013.07.003, Linear Algebra Appl. 439 (2013), 2263-2292. (2013) Zbl1286.34025MR3091304DOI10.1016/j.laa.2013.07.003
- Sen, M., Sharma, D., 10.1016/j.laa.2013.12.035, Linear Algebra Appl. 446 (2014), 224-236. (2014) Zbl1286.65050MR3163141DOI10.1016/j.laa.2013.12.035
- Sharma, D., Sen, M., 10.3390/math4010012, Mathematics 4 (2016), Article ID 12, 11 pages. (2016) Zbl1382.65109DOI10.3390/math4010012
- Sharma, D., Sen, M., 10.1515/spma-2018-0008, Spec. Matrices 6 (2018), 77-92. (2018) Zbl1391.15098MR3764333DOI10.1515/spma-2018-0008
- Zhang, Y., On the general algebraic inverse eigenvalue problems, J. Comput. Math. 22 (2004), 567-580. (2004) Zbl1066.65044MR2072173
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.