A recovery-based a posteriori error estimator for the generalized Stokes problem

Pengzhan Huang; Qiuyu Zhang

Applications of Mathematics (2020)

  • Volume: 65, Issue: 1, page 23-41
  • ISSN: 0862-7940

Abstract

top
A recovery-based a posteriori error estimator for the generalized Stokes problem is established based on the stabilized P 1 - P 0 (linear/constant) finite element method. The reliability and efficiency of the error estimator are shown. Through theoretical analysis and numerical tests, it is revealed that the estimator is useful and efficient for the generalized Stokes problem.

How to cite

top

Huang, Pengzhan, and Zhang, Qiuyu. "A recovery-based a posteriori error estimator for the generalized Stokes problem." Applications of Mathematics 65.1 (2020): 23-41. <http://eudml.org/doc/295023>.

@article{Huang2020,
abstract = {A recovery-based a posteriori error estimator for the generalized Stokes problem is established based on the stabilized $P_1-P_0$ (linear/constant) finite element method. The reliability and efficiency of the error estimator are shown. Through theoretical analysis and numerical tests, it is revealed that the estimator is useful and efficient for the generalized Stokes problem.},
author = {Huang, Pengzhan, Zhang, Qiuyu},
journal = {Applications of Mathematics},
keywords = {generalized Stokes problem; recovery-based error estimator; adaptive method; finite element method},
language = {eng},
number = {1},
pages = {23-41},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A recovery-based a posteriori error estimator for the generalized Stokes problem},
url = {http://eudml.org/doc/295023},
volume = {65},
year = {2020},
}

TY - JOUR
AU - Huang, Pengzhan
AU - Zhang, Qiuyu
TI - A recovery-based a posteriori error estimator for the generalized Stokes problem
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 23
EP - 41
AB - A recovery-based a posteriori error estimator for the generalized Stokes problem is established based on the stabilized $P_1-P_0$ (linear/constant) finite element method. The reliability and efficiency of the error estimator are shown. Through theoretical analysis and numerical tests, it is revealed that the estimator is useful and efficient for the generalized Stokes problem.
LA - eng
KW - generalized Stokes problem; recovery-based error estimator; adaptive method; finite element method
UR - http://eudml.org/doc/295023
ER -

References

top
  1. Araya, R., Barrenechea, G. R., Poza, A., 10.1016/j.cam.2007.03.011, J. Comput. Appl. Math. 214 (2008), 457-479. (2008) Zbl1132.76028MR2398346DOI10.1016/j.cam.2007.03.011
  2. Babuška, I., Rheinboldt, W. C., 10.1002/nme.1620121010, Int. J. Numer. Methods Eng. 12 (1978), 1597-1615. (1978) Zbl0396.65068MR0488846DOI10.1002/nme.1620121010
  3. Bank, R. E., Welfert, B. D., 10.1016/0045-7825(90)90124-5, Comput. Methods Appl. Mech. Eng. 83 (1990), 61-68. (1990) Zbl0732.65100MR1078695DOI10.1016/0045-7825(90)90124-5
  4. Barrenechea, G. R., Valentin, F., 10.1007/s002110100371, Numer. Math. 92 (2002), 653-677. (2002) Zbl1019.65087MR1935805DOI10.1007/s002110100371
  5. Barrios, T. P., Bustinza, R., García, G. C., Hernández, E., 10.1016/j.cma.2012.05.006, Comput. Methods Appl. Mech. Eng. 237-240 (2012), 78-87. (2012) Zbl1253.76053MR2942835DOI10.1016/j.cma.2012.05.006
  6. Bernardi, C., Verfürth, R., 10.1007/s002110000135, Numer. Math. 85 (2000), 579-608. (2000) Zbl0962.65096MR1771781DOI10.1007/s002110000135
  7. Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D., 10.1137/S0036142905444482, SIAM J. Numer. Anal. 44 (2006), 82-101. (2006) Zbl1145.76015MR2217373DOI10.1137/S0036142905444482
  8. Burman, E., Hansbo, P., 10.1016/j.cma.2005.05.009, Comput. Methods Appl. Mech. Eng. 195 (2006), 2393-2410. (2006) Zbl1125.76038MR2207476DOI10.1016/j.cma.2005.05.009
  9. Bustinza, R., Gatica, G. N., González, M., 10.1002/fld.1029, Int. J. Numer. Methods Fluids 49 (2005), 877-903. (2005) Zbl1077.76038MR2173758DOI10.1002/fld.1029
  10. Carstensen, C., 10.1002/zamm.200410101, ZAMM, Z. Angew. Math. Mech. 84 (2004), 3-21. (2004) Zbl1073.65120MR2031241DOI10.1002/zamm.200410101
  11. Carstensen, C., Funken, S. A., 10.1090/S0025-5718-00-01264-3, Math. Comput. 70 (2001), 1353-1381. (2001) Zbl1014.76042MR1836908DOI10.1090/S0025-5718-00-01264-3
  12. Carstensen, C., Verfürth, R., 10.1137/S003614299732334X, SIAM J. Numer. Anal. 36 (1999), 1571-1587. (1999) Zbl0938.65124MR1706735DOI10.1137/S003614299732334X
  13. Chou, S. H., 10.1090/S0025-5718-97-00792-8, Math. Comput. 66 (1997), 85-104. (1997) Zbl0854.65091MR1372003DOI10.1090/S0025-5718-97-00792-8
  14. Deng, Q., Feng, X., Multigrid methods for the generalized Stokes equations based on mixed finite element methods, J. Comput. Math. 20 (2002), 129-152. (2002) Zbl0998.65123MR1884415
  15. Duan, H.-Y., Hsieh, P.-W., Tan, R. C. E., Yang, S.-Y., 10.1016/j.cma.2013.11.024, Comput. Methods Appl. Mech. Eng. 271 (2014), 23-47. (2014) Zbl1296.76081MR3162662DOI10.1016/j.cma.2013.11.024
  16. Duarte, C. A., Oden, J. T., 10.1016/S0045-7825(96)01085-7, Comput. Methods Appl. Mech. Eng. 139 (1996), 237-262. (1996) Zbl0918.73328MR1426011DOI10.1016/S0045-7825(96)01085-7
  17. He, Y., Xie, C., Zheng, H., 10.4208/aamm.09-m0995, Adv. Appl. Math. Mech. 2 (2010), 798-809. (2010) Zbl1262.65158MR2719057DOI10.4208/aamm.09-m0995
  18. Huang, P., Zhang, Q., A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator, Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 62 (2019), 295-304. (2019) MR4022421
  19. Kay, D., Silvester, D., 10.1137/S1064827598333715, SIAM J. Sci. Comput. 21 (1999), 1321-1336. (1999) Zbl0956.65100MR1740398DOI10.1137/S1064827598333715
  20. Larin, M., Reusken, A., 10.1002/nla.561, Numer. Linear Algebra Appl. 15 (2008), 13-34. (2008) Zbl1212.65493MR2388412DOI10.1002/nla.561
  21. Nafa, K., Wathen, A. J., 10.1016/j.cma.2008.10.017, Comput. Methods Appl. Mech. Eng. 198 (2009), 877-883. (2009) Zbl1229.76054MR2498529DOI10.1016/j.cma.2008.10.017
  22. Repin, S., Stenberg, R., 10.1007/s10958-007-0092-7, J. Math. Sci., New York 142 (2007), 1828-1843 translation from Probl. Mat. Anal. 34 2006 89-101. (2007) Zbl1202.65150MR2331642DOI10.1007/s10958-007-0092-7
  23. Rodríguez, R., 10.1002/num.1690100509, Numer. Methods Partial Differ. Equations 10 (1994), 625-635. (1994) Zbl0806.73069MR1290948DOI10.1002/num.1690100509
  24. Song, L., Hou, Y., Cai, Z., 10.1016/j.cma.2014.01.004, Comput. Methods Appl. Mech. Eng. 272 (2014), 1-16. (2014) Zbl1296.76087MR3171270DOI10.1016/j.cma.2014.01.004
  25. Verfürth, R., 10.1007/BF01390056, Numer. Math. 55 (1989), 309-325. (1989) Zbl0674.65092MR0993474DOI10.1007/BF01390056
  26. Verfürth, R., 10.2307/2153518, Math. Comput. 62 (1994), 445-475. (1994) Zbl0799.65112MR1213837DOI10.2307/2153518
  27. Verfürth, R., A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner Series Advances in Numerical Mathematics, Wiley, Chichester; Teubner, Stuttgart (1996). (1996) Zbl0853.65108
  28. Wang, Z., Chen, Z., Li, J., A stabilized nonconforming quadrilateral finite element method for the generalized Stokes equations, Int. J. Numer. Anal. Model. 9 (2012), 449-457. (2012) Zbl1277.76020MR2926523
  29. Wang, J., Wang, Y., Ye, X., A posteriori error estimate for stabilized finite element methods for the Stokes equations, Int. J. Numer. Anal. Model. 9 (2012), 1-16. (2012) Zbl06165588MR2871298
  30. Zheng, H., Hou, Y., Shi, F., 10.1137/090771508, SIAM J. Sci. Comput. 32 (2010), 1346-1360. (2010) Zbl1410.76206MR2652081DOI10.1137/090771508
  31. Zienkiewicz, O. C., Zhu, J. Z., 10.1002/nme.1620330702, Int. J. Numer. Methods Eng. 33 (1992), 1331-1364. (1992) Zbl0769.73084MR1161557DOI10.1002/nme.1620330702
  32. Zienkiewicz, O. C., Zhu, J. Z., 10.1016/0168-874X(94)00054-J, Finite Elem. Anal. Des. 19 (1995), 11-23. (1995) Zbl0875.73292DOI10.1016/0168-874X(94)00054-J

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.