A recovery-based a posteriori error estimator for the generalized Stokes problem
Applications of Mathematics (2020)
- Volume: 65, Issue: 1, page 23-41
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHuang, Pengzhan, and Zhang, Qiuyu. "A recovery-based a posteriori error estimator for the generalized Stokes problem." Applications of Mathematics 65.1 (2020): 23-41. <http://eudml.org/doc/295023>.
@article{Huang2020,
abstract = {A recovery-based a posteriori error estimator for the generalized Stokes problem is established based on the stabilized $P_1-P_0$ (linear/constant) finite element method. The reliability and efficiency of the error estimator are shown. Through theoretical analysis and numerical tests, it is revealed that the estimator is useful and efficient for the generalized Stokes problem.},
author = {Huang, Pengzhan, Zhang, Qiuyu},
journal = {Applications of Mathematics},
keywords = {generalized Stokes problem; recovery-based error estimator; adaptive method; finite element method},
language = {eng},
number = {1},
pages = {23-41},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A recovery-based a posteriori error estimator for the generalized Stokes problem},
url = {http://eudml.org/doc/295023},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Huang, Pengzhan
AU - Zhang, Qiuyu
TI - A recovery-based a posteriori error estimator for the generalized Stokes problem
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 23
EP - 41
AB - A recovery-based a posteriori error estimator for the generalized Stokes problem is established based on the stabilized $P_1-P_0$ (linear/constant) finite element method. The reliability and efficiency of the error estimator are shown. Through theoretical analysis and numerical tests, it is revealed that the estimator is useful and efficient for the generalized Stokes problem.
LA - eng
KW - generalized Stokes problem; recovery-based error estimator; adaptive method; finite element method
UR - http://eudml.org/doc/295023
ER -
References
top- Araya, R., Barrenechea, G. R., Poza, A., 10.1016/j.cam.2007.03.011, J. Comput. Appl. Math. 214 (2008), 457-479. (2008) Zbl1132.76028MR2398346DOI10.1016/j.cam.2007.03.011
- Babuška, I., Rheinboldt, W. C., 10.1002/nme.1620121010, Int. J. Numer. Methods Eng. 12 (1978), 1597-1615. (1978) Zbl0396.65068MR0488846DOI10.1002/nme.1620121010
- Bank, R. E., Welfert, B. D., 10.1016/0045-7825(90)90124-5, Comput. Methods Appl. Mech. Eng. 83 (1990), 61-68. (1990) Zbl0732.65100MR1078695DOI10.1016/0045-7825(90)90124-5
- Barrenechea, G. R., Valentin, F., 10.1007/s002110100371, Numer. Math. 92 (2002), 653-677. (2002) Zbl1019.65087MR1935805DOI10.1007/s002110100371
- Barrios, T. P., Bustinza, R., García, G. C., Hernández, E., 10.1016/j.cma.2012.05.006, Comput. Methods Appl. Mech. Eng. 237-240 (2012), 78-87. (2012) Zbl1253.76053MR2942835DOI10.1016/j.cma.2012.05.006
- Bernardi, C., Verfürth, R., 10.1007/s002110000135, Numer. Math. 85 (2000), 579-608. (2000) Zbl0962.65096MR1771781DOI10.1007/s002110000135
- Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D., 10.1137/S0036142905444482, SIAM J. Numer. Anal. 44 (2006), 82-101. (2006) Zbl1145.76015MR2217373DOI10.1137/S0036142905444482
- Burman, E., Hansbo, P., 10.1016/j.cma.2005.05.009, Comput. Methods Appl. Mech. Eng. 195 (2006), 2393-2410. (2006) Zbl1125.76038MR2207476DOI10.1016/j.cma.2005.05.009
- Bustinza, R., Gatica, G. N., González, M., 10.1002/fld.1029, Int. J. Numer. Methods Fluids 49 (2005), 877-903. (2005) Zbl1077.76038MR2173758DOI10.1002/fld.1029
- Carstensen, C., 10.1002/zamm.200410101, ZAMM, Z. Angew. Math. Mech. 84 (2004), 3-21. (2004) Zbl1073.65120MR2031241DOI10.1002/zamm.200410101
- Carstensen, C., Funken, S. A., 10.1090/S0025-5718-00-01264-3, Math. Comput. 70 (2001), 1353-1381. (2001) Zbl1014.76042MR1836908DOI10.1090/S0025-5718-00-01264-3
- Carstensen, C., Verfürth, R., 10.1137/S003614299732334X, SIAM J. Numer. Anal. 36 (1999), 1571-1587. (1999) Zbl0938.65124MR1706735DOI10.1137/S003614299732334X
- Chou, S. H., 10.1090/S0025-5718-97-00792-8, Math. Comput. 66 (1997), 85-104. (1997) Zbl0854.65091MR1372003DOI10.1090/S0025-5718-97-00792-8
- Deng, Q., Feng, X., Multigrid methods for the generalized Stokes equations based on mixed finite element methods, J. Comput. Math. 20 (2002), 129-152. (2002) Zbl0998.65123MR1884415
- Duan, H.-Y., Hsieh, P.-W., Tan, R. C. E., Yang, S.-Y., 10.1016/j.cma.2013.11.024, Comput. Methods Appl. Mech. Eng. 271 (2014), 23-47. (2014) Zbl1296.76081MR3162662DOI10.1016/j.cma.2013.11.024
- Duarte, C. A., Oden, J. T., 10.1016/S0045-7825(96)01085-7, Comput. Methods Appl. Mech. Eng. 139 (1996), 237-262. (1996) Zbl0918.73328MR1426011DOI10.1016/S0045-7825(96)01085-7
- He, Y., Xie, C., Zheng, H., 10.4208/aamm.09-m0995, Adv. Appl. Math. Mech. 2 (2010), 798-809. (2010) Zbl1262.65158MR2719057DOI10.4208/aamm.09-m0995
- Huang, P., Zhang, Q., A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator, Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 62 (2019), 295-304. (2019) MR4022421
- Kay, D., Silvester, D., 10.1137/S1064827598333715, SIAM J. Sci. Comput. 21 (1999), 1321-1336. (1999) Zbl0956.65100MR1740398DOI10.1137/S1064827598333715
- Larin, M., Reusken, A., 10.1002/nla.561, Numer. Linear Algebra Appl. 15 (2008), 13-34. (2008) Zbl1212.65493MR2388412DOI10.1002/nla.561
- Nafa, K., Wathen, A. J., 10.1016/j.cma.2008.10.017, Comput. Methods Appl. Mech. Eng. 198 (2009), 877-883. (2009) Zbl1229.76054MR2498529DOI10.1016/j.cma.2008.10.017
- Repin, S., Stenberg, R., 10.1007/s10958-007-0092-7, J. Math. Sci., New York 142 (2007), 1828-1843 translation from Probl. Mat. Anal. 34 2006 89-101. (2007) Zbl1202.65150MR2331642DOI10.1007/s10958-007-0092-7
- Rodríguez, R., 10.1002/num.1690100509, Numer. Methods Partial Differ. Equations 10 (1994), 625-635. (1994) Zbl0806.73069MR1290948DOI10.1002/num.1690100509
- Song, L., Hou, Y., Cai, Z., 10.1016/j.cma.2014.01.004, Comput. Methods Appl. Mech. Eng. 272 (2014), 1-16. (2014) Zbl1296.76087MR3171270DOI10.1016/j.cma.2014.01.004
- Verfürth, R., 10.1007/BF01390056, Numer. Math. 55 (1989), 309-325. (1989) Zbl0674.65092MR0993474DOI10.1007/BF01390056
- Verfürth, R., 10.2307/2153518, Math. Comput. 62 (1994), 445-475. (1994) Zbl0799.65112MR1213837DOI10.2307/2153518
- Verfürth, R., A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner Series Advances in Numerical Mathematics, Wiley, Chichester; Teubner, Stuttgart (1996). (1996) Zbl0853.65108
- Wang, Z., Chen, Z., Li, J., A stabilized nonconforming quadrilateral finite element method for the generalized Stokes equations, Int. J. Numer. Anal. Model. 9 (2012), 449-457. (2012) Zbl1277.76020MR2926523
- Wang, J., Wang, Y., Ye, X., A posteriori error estimate for stabilized finite element methods for the Stokes equations, Int. J. Numer. Anal. Model. 9 (2012), 1-16. (2012) Zbl06165588MR2871298
- Zheng, H., Hou, Y., Shi, F., 10.1137/090771508, SIAM J. Sci. Comput. 32 (2010), 1346-1360. (2010) Zbl1410.76206MR2652081DOI10.1137/090771508
- Zienkiewicz, O. C., Zhu, J. Z., 10.1002/nme.1620330702, Int. J. Numer. Methods Eng. 33 (1992), 1331-1364. (1992) Zbl0769.73084MR1161557DOI10.1002/nme.1620330702
- Zienkiewicz, O. C., Zhu, J. Z., 10.1016/0168-874X(94)00054-J, Finite Elem. Anal. Des. 19 (1995), 11-23. (1995) Zbl0875.73292DOI10.1016/0168-874X(94)00054-J
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.