Solvability of a dynamic rational contact with limited interpenetration for viscoelastic plates
Applications of Mathematics (2020)
- Volume: 65, Issue: 1, page 43-65
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topJarušek, Jiří. "Solvability of a dynamic rational contact with limited interpenetration for viscoelastic plates." Applications of Mathematics 65.1 (2020): 43-65. <http://eudml.org/doc/295032>.
@article{Jarušek2020,
abstract = {Solvability of the rational contact with limited interpenetration of different kind of viscolastic plates is proved. The biharmonic plates, von Kármán plates, Reissner-Mindlin plates, and full von Kármán systems are treated. The viscoelasticity can have the classical (``short memory'') form or the form of a certain singular memory. For all models some convergence of the solutions to the solutions of the Signorini contact is proved provided the thickness of the interpenetration tends to zero.},
author = {Jarušek, Jiří},
journal = {Applications of Mathematics},
keywords = {dynamic contact problem; limited interpenetration; viscoelastic plate; existence of solution},
language = {eng},
number = {1},
pages = {43-65},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solvability of a dynamic rational contact with limited interpenetration for viscoelastic plates},
url = {http://eudml.org/doc/295032},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Jarušek, Jiří
TI - Solvability of a dynamic rational contact with limited interpenetration for viscoelastic plates
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 43
EP - 65
AB - Solvability of the rational contact with limited interpenetration of different kind of viscolastic plates is proved. The biharmonic plates, von Kármán plates, Reissner-Mindlin plates, and full von Kármán systems are treated. The viscoelasticity can have the classical (``short memory'') form or the form of a certain singular memory. For all models some convergence of the solutions to the solutions of the Signorini contact is proved provided the thickness of the interpenetration tends to zero.
LA - eng
KW - dynamic contact problem; limited interpenetration; viscoelastic plate; existence of solution
UR - http://eudml.org/doc/295032
ER -
References
top- Bock, I., Jarušek, J., Unilateral dynamic contact of viscoelastic von Kármán plates, Adv. Math. Sci. Appl. 16 (2006), 175-187. (2006) Zbl1110.35049MR2253231
- Bock, I., Jarušek, J., 10.1007/s10492-007-0030-5, Appl. Math., Praha 52 (2007), 515-527. (2007) Zbl1164.35447MR2357578DOI10.1007/s10492-007-0030-5
- Bock, I., Jarušek, J., 10.1007/s00033-010-0066-3, Z. Angew. Math. Phys. 61 (2010), 865-876. (2010) Zbl1273.74352MR2726632DOI10.1007/s00033-010-0066-3
- Bock, I., Jarušek, J., 10.1016/j.na.2011.03.054, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 4192-4202. (2011) Zbl1402.74068MR2803022DOI10.1016/j.na.2011.03.054
- Borwein, J. M., Zhu, Q. J., 10.1007/0-387-28271-8, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 20, Springer, New York (2005). (2005) Zbl1076.49001MR2144010DOI10.1007/0-387-28271-8
- Eck, C., Jarušek, J., Krbec, M., 10.1201/9781420027365, Pure and Applied Mathematics (Boca Raton) 270, Chapman & Hall/CRC, Boca Raton (2005). (2005) Zbl1079.74003MR2128865DOI10.1201/9781420027365
- Eck, C., Jarušek, J., Stará, J., 10.1007/s00205-012-0602-8, Arch. Ration. Mech. Anal. 208 (2013), 25-57. (2013) Zbl1320.74083MR3021543DOI10.1007/s00205-012-0602-8
- Jarušek, J., 10.1007/s00033-015-0539-5, Z. Angew. Math. Phys. 66 (2015), 2161-2172. (2015) Zbl1327.35364MR3412294DOI10.1007/s00033-015-0539-5
- Jarušek, J., Stará, J., 10.1177/1081286517703262, Math. Mech. Solids 23 (2018), 1040-1048. (2018) Zbl1401.74218MR3825900DOI10.1177/1081286517703262
- Koch, H., Stachel, A., 10.1002/mma.1670160806, Math. Methods Appl. Sci. 16 (1993), 581-586. (1993) Zbl0778.73029MR1233041DOI10.1002/mma.1670160806
- Lagnese, J. E., 10.1137/1.9781611970821, SIAM Studies in Applied Mathematics 10, Society for Industrial and Applied Mathematics, Philadelphia (1989). (1989) Zbl0696.73034MR1061153DOI10.1137/1.9781611970821
- Signorini, A., Sopra alcune questioni di statica dei sistemi continui, Ann. Sc. Norm. Super. Pisa, II. Ser. 2 (1933), 231-251 Italian 9999JFM99999 59.0738.01. (1933) MR1556704
- Signorini, A., Questioni di elasticità non linearizzata e semilinearizzata, Rend. Mat. Appl., V. Ser. 18 (1959), 95-139 Italian. (1959) Zbl0091.38006MR0118021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.