A multi-subpopulation bat optimization algorithm for economic dispatch problem with non-essential demand response
Yanjun Shen; Bo Yang; Xiongfeng Huang; Yujiao Zhang; Chao Tan
Kybernetika (2019)
- Volume: 55, Issue: 5, page 809-830
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topShen, Yanjun, et al. "A multi-subpopulation bat optimization algorithm for economic dispatch problem with non-essential demand response." Kybernetika 55.5 (2019): 809-830. <http://eudml.org/doc/295055>.
@article{Shen2019,
abstract = {In this paper, we propose a new economic dispatch model with random wind power, demand response and carbon tax. The specific feature of the demand response model is that the consumer's electricity demand is divided into two parts: necessary part and non-essential part. The part of the consumer's participation in the demand response is the non-essential part of the electricity consumption. The optimal dispatch objective is to obtain the minimum total cost (fuel cost, random wind power cost and emission cost) and the maximum consumer's non-essential demand response benefit while satisfying some given constraints. In order to solve the optimal dispatch objective, a multi-subpopulation bat optimization algorithm (MSPBA) is proposed by using different search strategies. Finally, a case of an economic dispatch model is given to verify the feasibility and effectiveness of the established mathematical model and proposed algorithm. The economic dispatch model includes three thermal generators, two wind turbines and two consumers. The simulation results show that the proposed model can reduce the consumer's electricity demand, reduce fuel cost and reduce the impact on the environment while considering random wind energy, non-essential demand response and carbon tax. In addition, the superiority of the proposed algorithm is verified by comparing with the optimization results of CPLEX+YALMIP toolbox for MATLAB, BA, DBA and ILSSIWBA.},
author = {Shen, Yanjun, Yang, Bo, Huang, Xiongfeng, Zhang, Yujiao, Tan, Chao},
journal = {Kybernetika},
keywords = {economic dispatch; non-essential demand response; random wind power; bat algorithm; multi-subpopulation},
language = {eng},
number = {5},
pages = {809-830},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A multi-subpopulation bat optimization algorithm for economic dispatch problem with non-essential demand response},
url = {http://eudml.org/doc/295055},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Shen, Yanjun
AU - Yang, Bo
AU - Huang, Xiongfeng
AU - Zhang, Yujiao
AU - Tan, Chao
TI - A multi-subpopulation bat optimization algorithm for economic dispatch problem with non-essential demand response
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 5
SP - 809
EP - 830
AB - In this paper, we propose a new economic dispatch model with random wind power, demand response and carbon tax. The specific feature of the demand response model is that the consumer's electricity demand is divided into two parts: necessary part and non-essential part. The part of the consumer's participation in the demand response is the non-essential part of the electricity consumption. The optimal dispatch objective is to obtain the minimum total cost (fuel cost, random wind power cost and emission cost) and the maximum consumer's non-essential demand response benefit while satisfying some given constraints. In order to solve the optimal dispatch objective, a multi-subpopulation bat optimization algorithm (MSPBA) is proposed by using different search strategies. Finally, a case of an economic dispatch model is given to verify the feasibility and effectiveness of the established mathematical model and proposed algorithm. The economic dispatch model includes three thermal generators, two wind turbines and two consumers. The simulation results show that the proposed model can reduce the consumer's electricity demand, reduce fuel cost and reduce the impact on the environment while considering random wind energy, non-essential demand response and carbon tax. In addition, the superiority of the proposed algorithm is verified by comparing with the optimization results of CPLEX+YALMIP toolbox for MATLAB, BA, DBA and ILSSIWBA.
LA - eng
KW - economic dispatch; non-essential demand response; random wind power; bat algorithm; multi-subpopulation
UR - http://eudml.org/doc/295055
ER -
References
top- Abdelaziz, A. Y., Ali, E. S., Elazim, S. M. A., 10.1016/j.energy.2016.02.041, Energy 101 (2016), 506-518. DOI10.1016/j.energy.2016.02.041
- Chakri, A., Khelif, R., Benouaret, M., al., et, 10.1016/j.eswa.2016.10.050, Expert Systems Appl. 69 (2017), 159-175. DOI10.1016/j.eswa.2016.10.050
- Chen, C. L., Vempati, V. S., Aljaber, N., 10.1016/0377-2217(93)e0228-p, Europ. J. Oper. Res. 80 (1995), 389-396. DOI10.1016/0377-2217(93)e0228-p
- Cheng, C. T., Liao, S. L., Tang, Z. T., al., et, 10.1016/j.enconman.2009.07.020, Energy Conversion Management 50 (2009), 3007-3014. DOI10.1016/j.enconman.2009.07.020
- Chen, F., Zhou, J., Wang, C., al., et, 10.1016/j.energy.2017.01.010, Energy 121 (2017), 276-291. DOI10.1016/j.energy.2017.01.010
- Das, S., Suganthan, P. N., 10.1109/tevc.2010.2059031, IEEE Trans. Evolutionary Comput. 15 (2011), 4-31. MR3032010DOI10.1109/tevc.2010.2059031
- Dorigo, M., Maniezzo, V., Colorni, A., 10.1109/3477.484436, IEEE Trans. Systems, Man, Cybernetics, Part B (Cybernetics) 26 (1996), 29-41. DOI10.1109/3477.484436
- Fahrioglu, M., Alvarado, F. L., 10.1109/59.898098, IEEE Trans. Power Systems 15 (2000), 1255-1260. DOI10.1109/59.898098
- Fahrioglu, M., Alvarado, F. L., 10.1109/59.918305, IEEE Trans. Power Systems 16 (2001), 317-322. DOI10.1109/59.918305
- Gan, C., Cao, W., Wu, M., al., et, 10.1016/j.eswa.2018.03.015, Expert Systems Appl. 104 (2018), 202-212. DOI10.1016/j.eswa.2018.03.015
- Gandomi, A. H., Yang, X. S., 10.1016/j.jocs.2013.10.002, J. Comput. Sci. 5 (2014), 224-232. MR3173261DOI10.1016/j.jocs.2013.10.002
- Gandomi, A. H., Yang, X. S., Alavi, A. H., al., et, 10.1007/s00521-012-1028-9, Neural Computing Appl. 22 (2013), 1239-1255. DOI10.1007/s00521-012-1028-9
- Ghasemi, M., Ghavidel, S., Ghanbarian, M. M., al., et, 10.1016/j.energy.2014.10.007, Energy 78 (2014), 276-289. DOI10.1016/j.energy.2014.10.007
- Guo, Y., Tong, L., Wu, W., al., et, 10.1109/tpwrs.2017.2655442, IEEE Trans. Power Systems 32 (2017), 3736-3746. DOI10.1109/tpwrs.2017.2655442
- Guo, F., Wen, C., Mao, J., al., et, 10.1109/tsg.2015.2434831, IEEE Trans. Smart Grid 7 (2016), 1572-1583. DOI10.1109/tsg.2015.2434831
- He, X. S., Ding, W. J., Yang, X. S., 10.1007/s00521-013-1518-4, Neural Comput. Appl. 25 (2014), 459-468. DOI10.1007/s00521-013-1518-4
- Hetzer, J., Yu, D. C., Bhattarai, K., 10.1109/tec.2007.914171, IEEE Trans. Energy Conversion 23 (2008), 603-611. DOI10.1109/tec.2007.914171
- Jabr, R., Coonick, A. H., Cory, B. J., 10.1109/59.871715, IEEE Trans. Power Syst. 15 (2000), 930-936. DOI10.1109/59.871715
- Jeddi, B., Vahidinasab, V., 10.1016/j.enconman.2013.11.027, Energy Conversion Management 78 (2014), 661-675. DOI10.1016/j.enconman.2013.11.027
- Ji, M., Tang, H., 10.1016/j.chaos.2003.12.032, Chaos Solitons Fractals 21 (2004), 933-941. MR2076025DOI10.1016/j.chaos.2003.12.032
- Kennedy, J., Eberhart, R., 10.1109/icnn.1995.488968, In: Proc. ICNN'95 - International Conference on Neural Networks, Perth 1995, 4, pp. 1942-1948. DOI10.1109/icnn.1995.488968
- Lee, K. Y., Park, Y. M., Ortiz, J. L., 10.1049/ip-c.1984.0012, IEE Proceedings. Part C: Generation, Transmission and Distribution. 131 (1984), 85-93. DOI10.1049/ip-c.1984.0012
- Li, M., Hou, J., Niu, Y., al., et, 10.1109/icca.2016.7505381, In: International Conference on Control and Automation, IEEE 2016, pp. 830-835. DOI10.1109/icca.2016.7505381
- Liang, H., Liu, Y., Shen, Y., al., et, 10.1109/tpwrs.2018.2812711, IEEE Trans. Power Syst. 33 (2018), 5052-5061. DOI10.1109/tpwrs.2018.2812711
- Liu, X., Xu, W., 10.1109/tpwrs.2010.2042085, IEEE Trans. Power Systems 25 (2010), 1705-1713. DOI10.1109/tpwrs.2010.2042085
- al., I. Mazhoud et, 10.1016/j.engappai.2013.02.002, Engrg. Appl. Artif. Intell. 26 (2013), 1263-1273. DOI10.1016/j.engappai.2013.02.002
- Nwulu, N. I., Fahrioglu, M., 10.1109/eeeic.2011.5874776, In: International Conference on Environment and Electrical Engineering, IEEE 2011, pp. 1-4. DOI10.1109/eeeic.2011.5874776
- Nwulu, N. I., Fahrioglu, M., Power system demand management contract design: A comparison between game theory and artificial neural networks., Int. Rev. Modell. Simul. 4 (2011), 104-112.
- Nwulu, N. I., Xia, X., 10.1016/j.renene.2016.08.026, Renewable Energy 101 (2017), 16-28. DOI10.1016/j.renene.2016.08.026
- Park, J. B., Lee, K. S., Shin, J. R., al., et, 10.1109/tpwrs.2004.831275, IEEE Trans. Power Syst. 20 (2005), 34-42. DOI10.1109/tpwrs.2004.831275
- Pavlyukevich, I., 10.1109/tpwrs.2004.831275, J. Comput. Physics 226 (2007), 1830-1844. MR2356396DOI10.1109/tpwrs.2004.831275
- Sen, T., Mathur, H. D., 10.1016/j.ijepes.2015.11.121, Int. J. Electr. Power Energy Systems 78 (2016), 735-744. DOI10.1016/j.ijepes.2015.11.121
- Walters, D. C., Sheble, G. B., 10.1109/59.260861, IEEE Trans. Power Systems 8 (1993), 1325-1332. DOI10.1109/59.260861
- Wood, A. J., Wollenberg, B. F., 10.1016/0140-6701(96)88715-7, Fuel Energy Abstracts 37 (1996), 195. DOI10.1016/0140-6701(96)88715-7
- Yang, X. S., 10.1007/978-3-642-12538-6_6, Comput. Knowledge Technol. 284 (2010), 65-74. DOI10.1007/978-3-642-12538-6_6
- Yang, X. S., Deb, S., 10.1504/ijmmno.2010.035430, Int. J. Math. Modell. Numer. Optim. 1 (2010), 330-343. DOI10.1504/ijmmno.2010.035430
- Yang, X., Gandomi, A. H., 10.1108/02644401211235834, Engrg. Computations 29 (2012), 464-483. MR3206205DOI10.1108/02644401211235834
- Yang, H., Yi, J., Zhao, J., al., et, 10.1016/j.neucom.2011.12.054, Neurocomputing 102 (2013), 154-162. DOI10.1016/j.neucom.2011.12.054
- Yao, F., Dong, Z. Y., Meng, K., al., et, 10.1109/tii.2012.2210431, IEEE Trans. Industr. Inform. 8 (2012), 880-888. DOI10.1109/tii.2012.2210431
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.