Graphical model selection for a particular class of continuous-time processes
Kybernetika (2019)
- Volume: 55, Issue: 5, page 782-801
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topZorzi, Mattia. "Graphical model selection for a particular class of continuous-time processes." Kybernetika 55.5 (2019): 782-801. <http://eudml.org/doc/295064>.
@article{Zorzi2019,
abstract = {Graphical models provide an undirected graph representation of relations between the components of a random vector. In the Gaussian case such an undirected graph is used to describe conditional independence relations among such components. In this paper, we consider a continuous-time Gaussian model which is accessible to observations only at time $T$. We introduce the concept of infinitesimal conditional independence for such a model. Then, we address the corresponding graphical model selection problem, i. e. the problem to estimate the graphical model from data. Finally, simulation studies are proposed to test the effectiveness of the graphical model selection procedure.},
author = {Zorzi, Mattia},
journal = {Kybernetika},
keywords = {sparse inverse covariance selection; regularization; graphical models; entropy; optimization},
language = {eng},
number = {5},
pages = {782-801},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Graphical model selection for a particular class of continuous-time processes},
url = {http://eudml.org/doc/295064},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Zorzi, Mattia
TI - Graphical model selection for a particular class of continuous-time processes
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 5
SP - 782
EP - 801
AB - Graphical models provide an undirected graph representation of relations between the components of a random vector. In the Gaussian case such an undirected graph is used to describe conditional independence relations among such components. In this paper, we consider a continuous-time Gaussian model which is accessible to observations only at time $T$. We introduce the concept of infinitesimal conditional independence for such a model. Then, we address the corresponding graphical model selection problem, i. e. the problem to estimate the graphical model from data. Finally, simulation studies are proposed to test the effectiveness of the graphical model selection procedure.
LA - eng
KW - sparse inverse covariance selection; regularization; graphical models; entropy; optimization
UR - http://eudml.org/doc/295064
ER -
References
top- Alpago, D., Zorzi, M., Ferrante, A., 10.1109/lcsys.2018.2845943, IEEE Control Systems Lett. 2 (2018), 4, 659-664. DOI10.1109/lcsys.2018.2845943
- Avventi, E., Lindquist, A., Wahlberg, B., 10.1109/tac.2012.2231551, IEEE Trans. Automat. Control 58 (2013), 1167-1178. MR3047919DOI10.1109/tac.2012.2231551
- Baggio, G., 10.1109/tac.2018.2794407, IEEE Trans. Automat- Control 63 (2018), 10, 3510-3515. MR3866257DOI10.1109/tac.2018.2794407
- Banerjee, O., Ghaoui, L. El, d'Aspremont, A., Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data., J. Machine Learning Res. 9 (2008), 485-516. MR2417243
- Boyd, S., Vandenberghe, L., 10.1017/cbo9780511804441, Cambridge Univ. Press, Cambridge 2004. Zbl1058.90049MR2061575DOI10.1017/cbo9780511804441
- Byrnes, C., Gusev, S., Lindquist, A., 10.1137/s0363012997321553, SIAM J. Optim. 37 (1998), 211-229. MR1642019DOI10.1137/s0363012997321553
- Byrnes, C. I., Georgiou, T. T., Lindquist, A., 10.1109/78.875475, IEEE Trans. Signal Process. 48 (2000), 3189-3205. MR1791083DOI10.1109/78.875475
- Candes, E., Plan, Y., 10.1109/jproc.2009.2035722, Proc. IEEE 98 (2010), 925-936. DOI10.1109/jproc.2009.2035722
- Candes, E., Recht, B., 10.1145/2184319.2184343, Comm. ACM 55 (2012), 111-119. MR2565240DOI10.1145/2184319.2184343
- Chandrasekaran, V., Parrilo, P., Willsky, A., 10.1214/12-aos1020, Ann. Statist. 40 (2010), 1935-2013. MR3059067DOI10.1214/12-aos1020
- Chandrasekaran, V., Shah, P., 10.1007/s10107-016-0998-2, Math. Program. 161 (2017), (1-2), 1-32. MR3592772DOI10.1007/s10107-016-0998-2
- Cover, T., Thomas, J., 10.1002/0471200611, Wiley, New York 1991. DOI10.1002/0471200611
- d'Aspremont, A., Banerjee, O., Ghaoui, L. El, 10.1137/060670985, SIAM J. Matrix Analysis Appl. 30 (2008), 56-66. MR2399568DOI10.1137/060670985
- Dempster, A., 10.2307/2528966, Biometrics 28 (1972), 157-175. MR3931974DOI10.2307/2528966
- Ferrante, A., Pavon, M., 10.1109/tit.2011.2143970, IEEE Trans. Inform. Theory 57 (2011), 3925-3931. MR2817064DOI10.1109/tit.2011.2143970
- Ferrante, A., Pavon, M., Ramponi, F., 10.1109/tac.2008.920238, IEEE Trans. Autom. Control 53 (2008), 954-967. MR2419442DOI10.1109/tac.2008.920238
- Friedman, J., Hastie, T., Tibshirani, R., 10.1093/biostatistics/kxm045, Biostatistics 9 (2008), 432-441. DOI10.1093/biostatistics/kxm045
- Grant, M., Boyd, S., CVX: Matlab software for disciplined convex programming, version 2.1., 2014.
- Gu, S., Betzel, R., Mattar, M., Cieslak, M., Delio, P., Grafton, S., Pasqualetti, F., Bassett, D., 10.1016/j.neuroimage.2017.01.003, NeuroImage 148 (2017), 305-317. DOI10.1016/j.neuroimage.2017.01.003
- Huang, J., Liu, N., Pourahmadi, M., Liu, L., 10.1093/biomet/93.1.85, Biometrika 93 (2006), 85-98. MR2277742DOI10.1093/biomet/93.1.85
- Huotari, N., Raitamaa, L., Helakari, H., Kananen, J., Raatikainen, V., Rasila, A., Tuovinen, T., Kantola, J., Borchardt, V., Kiviniemi, V., Korhonen, V., 10.3389/fnins.2019.00279, Frontiers Neurosci. 13 (2019), 279. DOI10.3389/fnins.2019.00279
- Jalali, A., Sanghavi, S., Learning the dependence graph of time series with latent factors., In: International Conference on Machine Learning Edinburgh 2012.
- Koller, D., Friedman, N., Probabilistic Graphical Models: Principles and Techniques., MIT Press, 2009. MR2778120
- Lauritzen, S., Graphical Models., Oxford University Press, Oxford 1996. MR1419991
- Meinshausen, N., Bühlmann, P., 10.1214/009053606000000281, Annals Statist. 34 (2006), 1436-1462. MR2278363DOI10.1214/009053606000000281
- Pearl, J., 10.1007/978-94-017-1735-9_12, In: Quantified representation of uncertainty and imprecision, Springer 1998, pp. 367-389. MR1743892DOI10.1007/978-94-017-1735-9_12
- Ringh, A., Karlsson, J., Lindquist, A., 10.1137/17m1127922, SIAM J. Control Optim. 56 (2018), 2, 913-944. MR3775123DOI10.1137/17m1127922
- Songsiri, J., Dahl, J., Vandenberghe, L., Graphical models of autoregressive processes., In: Convex Optimization in Signal Processing and Communications (D. Palomar and Y. Eldar, eds.), Cambridge Univ. Press, Cambridge 2010, pp. 1-29. MR2767565
- Songsiri, J., Vandenberghe, L., Topology selection in graphical models of autoregressive processes., J. Machine Learning Res. 11 (2010), 2671-2705. MR2738780
- Yue, Z., Thunberg, J., Ljung, L., Gonçalves, J., Identification of sparse continuous-time linear systems with low sampling rate: Exploring matrix logarithms., arXiv preprint arXiv:1605.08590, 2016.
- {Zhu}, B., {Baggio}, G., 10.1109/tac.2018.2836984, IEEE Trans. Automat. Control 64 (2019), 2, 820-825. MR3912133DOI10.1109/tac.2018.2836984
- Zorzi, M., 10.1109/tac.2013.2293218, IEEE Trans. Automat. Control 59 (2014), 892-904. MR3199341DOI10.1109/tac.2013.2293218
- Zorzi, M., 10.1007/s00498-013-0118-2, Math. Control Signals Systems 26 (2014), 259-278. MR3201948DOI10.1007/s00498-013-0118-2
- Zorzi, M., 10.1016/j.automatica.2015.09.023, Automatica 62 (2015), 87-92. MR3423974DOI10.1016/j.automatica.2015.09.023
- Zorzi, M., 10.1109/tac.2014.2359713, IEEE Trans. Automat. Control 60 (2015), 1647-1652. MR3353402DOI10.1109/tac.2014.2359713
- Zorzi, M., 10.1016/j.automatica.2019.108516, Automatica 109 (2019), 108516. MR3989933DOI10.1016/j.automatica.2019.108516
- Zorzi, M., Sepulchre, R., 10.1109/tac.2015.2491678, IEEE Trans. Automat. Control 61 (2016), 2327-2340. MR3545056DOI10.1109/tac.2015.2491678
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.