An alternating minimization algorithm for Factor Analysis
Valentina Ciccone; Augusto Ferrante; Mattia Zorzi
Kybernetika (2019)
- Volume: 55, Issue: 4, page 740-754
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCiccone, Valentina, Ferrante, Augusto, and Zorzi, Mattia. "An alternating minimization algorithm for Factor Analysis." Kybernetika 55.4 (2019): 740-754. <http://eudml.org/doc/295067>.
@article{Ciccone2019,
abstract = {The problem of decomposing a given covariance matrix as the sum of a positive semi-definite matrix of given rank and a positive semi-definite diagonal matrix, is considered. We present a projection-type algorithm to address this problem. This algorithm appears to perform extremely well and is extremely fast even when the given covariance matrix has a very large dimension. The effectiveness of the algorithm is assessed through simulation studies and by applications to three real benchmark datasets that are considered. A local convergence analysis of the algorithm is also presented.},
author = {Ciccone, Valentina, Ferrante, Augusto, Zorzi, Mattia},
journal = {Kybernetika},
keywords = {matrix decomposition; factor analysis; covariance matrices; low rank matrices; projections},
language = {eng},
number = {4},
pages = {740-754},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An alternating minimization algorithm for Factor Analysis},
url = {http://eudml.org/doc/295067},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Ciccone, Valentina
AU - Ferrante, Augusto
AU - Zorzi, Mattia
TI - An alternating minimization algorithm for Factor Analysis
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 4
SP - 740
EP - 754
AB - The problem of decomposing a given covariance matrix as the sum of a positive semi-definite matrix of given rank and a positive semi-definite diagonal matrix, is considered. We present a projection-type algorithm to address this problem. This algorithm appears to perform extremely well and is extremely fast even when the given covariance matrix has a very large dimension. The effectiveness of the algorithm is assessed through simulation studies and by applications to three real benchmark datasets that are considered. A local convergence analysis of the algorithm is also presented.
LA - eng
KW - matrix decomposition; factor analysis; covariance matrices; low rank matrices; projections
UR - http://eudml.org/doc/295067
ER -
References
top- Agarwal, A., Negahban, S., Wainwright, M. J., 10.1214/12-aos1000, Ann. Statist. 40 (2012), 2, 1171-1197. MR2985947DOI10.1214/12-aos1000
- Bai, J., Li, K., al., et, 10.1214/11-AOS966, Ann. Statist. 40 (2012), 1, 436-465. MR3014313DOI10.1214/11-AOS966
- Bai, J., Ng, S., 10.1111/1468-0262.00273, Econometrica 70 (2002), 1, 191-221. MR1926259DOI10.1111/1468-0262.00273
- Bai, J., Ng, S., 10.1561/0800000002, Found. Trends Econometr. 3 (2008), 2, 89-163. DOI10.1561/0800000002
- Bertsimas, D., Copenhaver, M. S., Mazumder, R., Certifiably optimal low rank factor analysis., J. Machine Learning Res. 18 (2017), 29, 1-53. MR3634896
- Ciccone, V., Ferrante, A., Zorzi, M., 10.1109/cdc.2017.8264253, In: Proc. 56th Annual Conference on Decision and Control (CDC), VIC, Melbourne 2017, pp. 4046-4051. DOI10.1109/cdc.2017.8264253
- Ciccone, V., Ferrante, A., Zorzi, M., 10.1109/cdc.2018.8619796, In: Proc. 2018 IEEE Conference on Decision and Control (CDC), Miami Beach 2018, pp. 2241-2246. DOI10.1109/cdc.2018.8619796
- Ciccone, V., Ferrante, A., Zorzi, M., 10.1109/tac.2018.2867372, IEEE Trans. Automat. Control 64 (2019), 6, 2412-2425. MR3960088DOI10.1109/tac.2018.2867372
- Deistler, M., Zinner, C., 10.4310/cis.2007.v7.n2.a3, Comm. Inform. Systems 7 (2007), 2, 153-166. MR2344194DOI10.4310/cis.2007.v7.n2.a3
- Riccia, G. Della, Shapiro, A., 10.1007/bf02293708, Psychometrika 47 (1982), 443-448. MR0691830DOI10.1007/bf02293708
- Fazel, M., Matrix rank minimization with applications., Elec. Eng. Dept. Stanford University 54 (2002), 1-130.
- Fazel, M., Hindi, H., Boyd, S., 10.23919/acc.2004.1384521, In: Proc. American Control Conference 4 (2004), pp. 3273-3278. DOI10.23919/acc.2004.1384521
- Geweke, J., The dynamic factor analysis of economic time series models., In: Latent Variables in Socio-Economic Models, SSRI workshop series, North-Holland 1977, pp. 365-383.
- Guttman, L., 10.1007/bf02289162, Psychometrika 19 (1954), 2, 149-161. MR0091235DOI10.1007/bf02289162
- Harman, H. H., Jones, W. H., 10.1007/bf02289468, Psychometrika 31 (1066), 3, 351-368. MR0201008DOI10.1007/bf02289468
- Heij, C., Scherrer, W., Deistler, M., 10.1137/s0363012995282127, SIAM J. Control Optim. 35 (1997), 6, 1924-1951. MR1478648DOI10.1137/s0363012995282127
- Helmke, U., Shayman, M. A., 10.1016/0024-3795(93)00070-g, Linear Algebra Appl. 215 (1995), 1-19. MR1317470DOI10.1016/0024-3795(93)00070-g
- Lax, P. D., Linear Algebra and Its Applications. Second edition., Wiley-Interscience, 2007. MR2356919
- Lewis, A. S., Malick, J., 10.1287/moor.1070.0291, Math. Oper. Res. 33 (2008), 1, 216-234. MR2393548DOI10.1287/moor.1070.0291
- Ning, L., Georgiou, T. T., Tannenbaum, A., Boyd, S. P., 10.1137/130921179, SIAM Rev. 57 (2015), 2, 167-197. MR3345338DOI10.1137/130921179
- Reiersøl, O., 10.2307/1907835, Econometrica: J. Economet. Soc. 18 (1950), 4, 375-389. MR0038054DOI10.2307/1907835
- Scherrer, W., Deistler, M., 10.1137/s0363012994262464, SIAM J. Control Optim. 36 (1998), 6, 2148-2175. MR1638960DOI10.1137/s0363012994262464
- Shapiro, A., 10.1007/bf02296274, Psychometrika 47 (1982), 2, 187-199. MR0667012DOI10.1007/bf02296274
- Shapiro, A., Berge, J. M. F. Ten, 10.1007/bf02294710, Psychometrika 67 (2002), 1, 79-94. MR1960829DOI10.1007/bf02294710
- Zorzi, M., Sepulchre, R., 10.1109/tac.2015.2491678, IEEE Trans. Automat. Control 61 (2016), 9, 2327-2340. MR3545056DOI10.1109/tac.2015.2491678
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.