Construction methods for implications on bounded lattices

M. Nesibe Kesicioğlu

Kybernetika (2019)

  • Volume: 55, Issue: 4, page 641-667
  • ISSN: 0023-5954

Abstract

top
In this paper, the ordinal sum construction methods of implications on bounded lattices are studied. Necessary and sufficient conditions of an ordinal sum for obtaining an implication are presented. New ordinal sum construction methods on bounded lattices which generate implications are discussed. Some basic properties of ordinal sum implications are studied.

How to cite

top

Kesicioğlu, M. Nesibe. "Construction methods for implications on bounded lattices." Kybernetika 55.4 (2019): 641-667. <http://eudml.org/doc/295073>.

@article{Kesicioğlu2019,
abstract = {In this paper, the ordinal sum construction methods of implications on bounded lattices are studied. Necessary and sufficient conditions of an ordinal sum for obtaining an implication are presented. New ordinal sum construction methods on bounded lattices which generate implications are discussed. Some basic properties of ordinal sum implications are studied.},
author = {Kesicioğlu, M. Nesibe},
journal = {Kybernetika},
keywords = {ordinal sum; implication; bounded lattice},
language = {eng},
number = {4},
pages = {641-667},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Construction methods for implications on bounded lattices},
url = {http://eudml.org/doc/295073},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Kesicioğlu, M. Nesibe
TI - Construction methods for implications on bounded lattices
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 4
SP - 641
EP - 667
AB - In this paper, the ordinal sum construction methods of implications on bounded lattices are studied. Necessary and sufficient conditions of an ordinal sum for obtaining an implication are presented. New ordinal sum construction methods on bounded lattices which generate implications are discussed. Some basic properties of ordinal sum implications are studied.
LA - eng
KW - ordinal sum; implication; bounded lattice
UR - http://eudml.org/doc/295073
ER -

References

top
  1. Baczyński, M., Drygaś, P., Król, A., Mesiar, R., 10.1109/fuzz-ieee.2017.8015700, In: Fuzzy systems (FUZZ-IEEE), 2017 IEEE International Conference, 2017. DOI10.1109/fuzz-ieee.2017.8015700
  2. Baczyński, M., Jayaram, B., Fuzzy Implications., Studies in Fuzziness and Soft Computing 231, Springer, Berlin, Heidelberg, 2008. Zbl1293.03012MR2428086
  3. Birkhoff, G., 10.1090/coll/025, Providence, 1967. MR0227053DOI10.1090/coll/025
  4. Çaylı, G. D., 10.1016/j.fss.2017.07.015, Fuzzy Sets and Systems 132 (2018), 129-143. MR3732255DOI10.1016/j.fss.2017.07.015
  5. Drygaś, P., Król, A., 10.1007/978-3-319-26211-6_4, In: Novel Developments in Uncertainty Represent, and Processing (K. T. Atanassov et al., eds.), Advences in Intelligent Systems and Computing 401, Springer Internat. Publ. AG, 2016, pp. 37-49. DOI10.1007/978-3-319-26211-6_4
  6. Drygaś, P., Król, A., 10.1515/tmmp-2016-0018, Tatra Mt. Math. Publ. 66 (2016), 39-50. MR3591073DOI10.1515/tmmp-2016-0018
  7. Dubois, D., Prade, H., 10.1016/0020-0255(85)90027-1, Inform. Sci. 36 (1985), 85-121. Zbl0582.03040MR0813766DOI10.1016/0020-0255(85)90027-1
  8. Dubois, D., Prade, H., 10.1016/0165-0114(91)90050-z, Fuzzy Sets and Systems 40 (1991), 143-202. MR1103660DOI10.1016/0165-0114(91)90050-z
  9. Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F., 10.1016/j.ins.2015.10.019, Inform. Sci. 330 (2016), 315-327. DOI10.1016/j.ins.2015.10.019
  10. Ertuğrul, Ü., Karaçal, F., Mesiar, R., 10.1002/int.21713, Int. J. Intell. Systems 30 (2015), 807-817. DOI10.1002/int.21713
  11. Fodor, J., Rudas, I. J., 10.1016/j.ins.2011.05.014, Inform. Sci. 181 (2011), 4860-4866. MR2825865DOI10.1016/j.ins.2011.05.014
  12. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E., 10.1109/sisy.2008.4664901, Cambridge University Press, 2009. Zbl1206.68299MR2538324DOI10.1109/sisy.2008.4664901
  13. Kesicioğlu, M. N., Mesiar, R., 10.1016/j.ins.2013.12.047, Inform. Sci. 276 (2014), 377-386. MR3206505DOI10.1016/j.ins.2013.12.047
  14. Klement, E. P., (eds.), R. Mesiar, Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms., Elsevier, Amsterdam 2005. MR2165231
  15. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
  16. Klement, E. P., Mesiar, R., Pap, E., 10.1007/s002330010127, Semigroup Forum 65 (2002), 71-82. MR1903555DOI10.1007/s002330010127
  17. Ma, Z., Wu, W. M., 10.1016/0020-0255(91)90007-h, Inform. Sci. 55 (1991), 77-97. Zbl0741.03010MR1080449DOI10.1016/0020-0255(91)90007-h
  18. Mas, M., Monserrat, M., Torrens, J., 10.1016/j.ins.2009.08.028, Inform. Sci. 179 (2009), 4208-4218. MR2722378DOI10.1016/j.ins.2009.08.028
  19. Mas, M., Monserrat, M., Torrens, J., Trillas, E., 10.1109/tfuzz.2007.896304, IEEE Trans. Fuzzy Syst. 15 (2007), 1107-1121. DOI10.1109/tfuzz.2007.896304
  20. Medina, J., 10.1016/j.fss.2012.03.002, Fuzzy Sets and Systems 202 (2012), 75-88. MR2934787DOI10.1016/j.fss.2012.03.002
  21. Mesiar, R., Mesiarová, A., 10.1016/j.fss.2003.06.008, Fuzzy Sets and Systems 143 (2004), 47-57. MR2060272DOI10.1016/j.fss.2003.06.008
  22. Mesiarová-Zemánková, A., 10.1016/j.ijar.2016.04.007, Int. J. Approx. Reason. 76 (2016), 1-17. MR3521044DOI10.1016/j.ijar.2016.04.007
  23. Mesiarová-Zemánková, A., 10.1016/j.fss.2016.07.006, Fuzzy Sets and Systems 308 (2017), 42-53. MR3579153DOI10.1016/j.fss.2016.07.006
  24. Riera, J. V., Torrens, J., 10.1016/j.ins.2013.06.008, Inform. Sci. 247 (2013), 131-143. MR3085948DOI10.1016/j.ins.2013.06.008
  25. Saminger, S., 10.1016/j.fss.2005.12.021, Fuzzy Sets and Systems 157 (2006), 1403-1416. MR2226983DOI10.1016/j.fss.2005.12.021
  26. Su, Y., Xie, A., Liu, H., 10.1016/j.ins.2014.09.021, Inform. Sci. 293 (2015), 251-262. MR3273566DOI10.1016/j.ins.2014.09.021
  27. Xie, A., Liu, H., Zhang, F., Li, C., 10.1016/j.fss.2012.01.009, Fuzzy Sets and Systems 205 (2012), 76-100. MR2960108DOI10.1016/j.fss.2012.01.009
  28. Yager, R. R., 10.1016/0165-0114(94)90082-5, Fuzzy Sets and Systems 67 (1994), 129-145. MR1302575DOI10.1016/0165-0114(94)90082-5
  29. Yager, R. R., Rybalov, A., 10.1016/0165-0114(95)00133-6, Fuzzy Sets and Systems 80 (1996), 111-120. Zbl0871.04007MR1389951DOI10.1016/0165-0114(95)00133-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.