Unit-regularity and representability for semiartinian -regular rings
Archivum Mathematicum (2020)
- Volume: 056, Issue: 1, page 43-47
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topHerrmann, Christian. "Unit-regularity and representability for semiartinian $*$-regular rings." Archivum Mathematicum 056.1 (2020): 43-47. <http://eudml.org/doc/295082>.
@article{Herrmann2020,
abstract = {We show that any semiartinian $*$-regular ring $R$ is unit-regular; if, in addition, $R$ is subdirectly irreducible then it admits a representation within some inner product space.},
author = {Herrmann, Christian},
journal = {Archivum Mathematicum},
keywords = {$*$-regular ring; representable; unit-regular},
language = {eng},
number = {1},
pages = {43-47},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Unit-regularity and representability for semiartinian $*$-regular rings},
url = {http://eudml.org/doc/295082},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Herrmann, Christian
TI - Unit-regularity and representability for semiartinian $*$-regular rings
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 1
SP - 43
EP - 47
AB - We show that any semiartinian $*$-regular ring $R$ is unit-regular; if, in addition, $R$ is subdirectly irreducible then it admits a representation within some inner product space.
LA - eng
KW - $*$-regular ring; representable; unit-regular
UR - http://eudml.org/doc/295082
ER -
References
top- Baccella, G., Spinosa, L., 10.1007/s10468-017-9682-3, Algebr. Represent. Theory 20 (2017), 1189–1213. (2017) MR3707911DOI10.1007/s10468-017-9682-3
- Berberian, S.K., Baer *-rings, Springer, Grundlehren 195, Berlin, 1972. (1972) MR0429975
- Goodearl, K.R., Von Neumann Regular Rings, 2nd ed., Krieger, Malabar, 1991. (1991) MR1150975
- Gross, H., Quadratic Forms in Infinite Dimensional Vector spaces, Birkhäuser, Basel, 1979. (1979) MR0537283
- Handelman, D., Finite Rickart C-algebras and their properties, Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New York-London, Studies in analysis ed., 1979, pp. 171–196. (1979) MR0546806
- Herrmann, C., Varieties of -regular rings, http://arxiv.org/abs/1904.04505.
- Herrmann, C., 10.2178/jsl/1278682219, J. Symbolic Logic 75 (3) (2010), 1102–1110. (2010) MR2723786DOI10.2178/jsl/1278682219
- Herrmann, C., Direct finiteness of representable regular -rings, Algebra Universalis 80 (1) (2019), 5 pp., http://arxiv.org/abs/1904.04505. (2019) MR3904443
- Herrmann, C., Semenova, M.V., 10.1007/s10469-014-9292-7, Algebra Logika 53 (4) (2014), 466–504, 550–551, (Russian), translation inAlgebra Logic 53 (2014), no. 4, 298–322. (2014) MR3309850DOI10.1007/s10469-014-9292-7
- Herrmann, C., Semenova, M.V., 10.14232/actasm-015-283-5, Acta Sci. Math. (Szeged) 82 (3–4) (2016), 395–442. (2016) MR3616186DOI10.14232/actasm-015-283-5
- Jacobson, N., Structure of Rings, AMS Col. Publ. XXXVII, Amer. Math. Soc., Providence, RI, 1956. (1956) Zbl0073.02002MR0081264
- Micol, F., On representability of -regular rings and modular ortholattices, Ph.D. thesis, TU Darmstadt, January 2003, http://elib.tu-darmstadt.de/diss/000303/diss.pdf. (2003)
- Wehrung, F., 10.1090/S0002-9939-99-04558-X, Proc. Amer. Math. Soc. 127 (1999), 363–370. (1999) Zbl0902.06006MR1468207DOI10.1090/S0002-9939-99-04558-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.