Unit-regularity and representability for semiartinian * -regular rings

Christian Herrmann

Archivum Mathematicum (2020)

  • Volume: 056, Issue: 1, page 43-47
  • ISSN: 0044-8753

Abstract

top
We show that any semiartinian * -regular ring R is unit-regular; if, in addition, R is subdirectly irreducible then it admits a representation within some inner product space.

How to cite

top

Herrmann, Christian. "Unit-regularity and representability for semiartinian $*$-regular rings." Archivum Mathematicum 056.1 (2020): 43-47. <http://eudml.org/doc/295082>.

@article{Herrmann2020,
abstract = {We show that any semiartinian $*$-regular ring $R$ is unit-regular; if, in addition, $R$ is subdirectly irreducible then it admits a representation within some inner product space.},
author = {Herrmann, Christian},
journal = {Archivum Mathematicum},
keywords = {$*$-regular ring; representable; unit-regular},
language = {eng},
number = {1},
pages = {43-47},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Unit-regularity and representability for semiartinian $*$-regular rings},
url = {http://eudml.org/doc/295082},
volume = {056},
year = {2020},
}

TY - JOUR
AU - Herrmann, Christian
TI - Unit-regularity and representability for semiartinian $*$-regular rings
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 1
SP - 43
EP - 47
AB - We show that any semiartinian $*$-regular ring $R$ is unit-regular; if, in addition, $R$ is subdirectly irreducible then it admits a representation within some inner product space.
LA - eng
KW - $*$-regular ring; representable; unit-regular
UR - http://eudml.org/doc/295082
ER -

References

top
  1. Baccella, G., Spinosa, L., 10.1007/s10468-017-9682-3, Algebr. Represent. Theory 20 (2017), 1189–1213. (2017) MR3707911DOI10.1007/s10468-017-9682-3
  2. Berberian, S.K., Baer *-rings, Springer, Grundlehren 195, Berlin, 1972. (1972) MR0429975
  3. Goodearl, K.R., Von Neumann Regular Rings, 2nd ed., Krieger, Malabar, 1991. (1991) MR1150975
  4. Gross, H., Quadratic Forms in Infinite Dimensional Vector spaces, Birkhäuser, Basel, 1979. (1979) MR0537283
  5. Handelman, D., Finite Rickart C * -algebras and their properties, Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New York-London, Studies in analysis ed., 1979, pp. 171–196. (1979) MR0546806
  6. Herrmann, C., Varieties of * -regular rings, http://arxiv.org/abs/1904.04505. 
  7. Herrmann, C., 10.2178/jsl/1278682219, J. Symbolic Logic 75 (3) (2010), 1102–1110. (2010) MR2723786DOI10.2178/jsl/1278682219
  8. Herrmann, C., Direct finiteness of representable regular * -rings, Algebra Universalis 80 (1) (2019), 5 pp., http://arxiv.org/abs/1904.04505. (2019) MR3904443
  9. Herrmann, C., Semenova, M.V., 10.1007/s10469-014-9292-7, Algebra Logika 53 (4) (2014), 466–504, 550–551, (Russian), translation inAlgebra Logic 53 (2014), no. 4, 298–322. (2014) MR3309850DOI10.1007/s10469-014-9292-7
  10. Herrmann, C., Semenova, M.V., 10.14232/actasm-015-283-5, Acta Sci. Math. (Szeged) 82 (3–4) (2016), 395–442. (2016) MR3616186DOI10.14232/actasm-015-283-5
  11. Jacobson, N., Structure of Rings, AMS Col. Publ. XXXVII, Amer. Math. Soc., Providence, RI, 1956. (1956) Zbl0073.02002MR0081264
  12. Micol, F., On representability of * -regular rings and modular ortholattices, Ph.D. thesis, TU Darmstadt, January 2003, http://elib.tu-darmstadt.de/diss/000303/diss.pdf. (2003) 
  13. Wehrung, F., 10.1090/S0002-9939-99-04558-X, Proc. Amer. Math. Soc. 127 (1999), 363–370. (1999) Zbl0902.06006MR1468207DOI10.1090/S0002-9939-99-04558-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.