Finiteness of local homology modules

Shahram Rezaei

Archivum Mathematicum (2020)

  • Volume: 056, Issue: 1, page 31-41
  • ISSN: 0044-8753

Abstract

top
Let I be an ideal of Noetherian ring R and M a finitely generated R -module. In this paper, we introduce the concept of weakly colaskerian modules and by using this concept, we give some vanishing and finiteness results for local homology modules. Let I M : = Ann R ( M / I M ) , we will prove that for any integer n

If N N is a weakly colaskerian linearly compact R R -module such that ( 0 : N I M ) 0 (0:_N {I_M})\ne 0 then

width I M ( N ) = inf { i H i I M ( N ) 0 } = inf { i H i I ( M , N ) 0 } . \operatorname{width}_{I_M}(N)= \inf \lbrace i\mid \operatorname{H}_i^{I_M}(N)\ne 0 \rbrace =\inf \lbrace i \mid \operatorname{H}_i^I(M,N)\ne 0 \rbrace \,.

If ( R , 𝔪 ) (R,\mathfrak {m}) is a Noetherian local ring and N N is an artinian R R -module then

i < n Cos R ( H i I M ( N ) ) = i < n Cos R ( H i I ( M , N ) ) = i < n Cos R ( Tor i R ( M / I M , N ) ) , \cup _{i<n}\operatorname{Cos}_R\big (\operatorname{H}_i^{I_M}(N)\big )=\cup _{i<n}\operatorname{Cos}_R\big (\operatorname{H}_i^I(M,N)\big )=\\ \cup _{i<n}\operatorname{Cos}_R\big (\operatorname{Tor}_i^R(M/IM,N)\big )\,,

inf { i H i I M ( N ) is not Noetherian R -module } = inf { i H i I ( M , N ) i s n o t N o e t h e r i a n R - m o d u l e } . \inf \lbrace i \mid \operatorname{H}_i^{I_M}(N) \text{ is not Noetherian $R$-module\,} \rbrace =\\ \inf \lbrace i \mid \operatorname{H}_i^I(M,N) \mbox {\ is not Noetherian R-module\,}\rbrace \,.

How to cite

top

Rezaei, Shahram. "Finiteness of local homology modules." Archivum Mathematicum 056.1 (2020): 31-41. <http://eudml.org/doc/295083>.

@article{Rezaei2020,
abstract = {Let $I$ be an ideal of Noetherian ring $R$ and $M$ a finitely generated $R$-module. In this paper, we introduce the concept of weakly colaskerian modules and by using this concept, we give some vanishing and finiteness results for local homology modules. Let $I_\{M\}:=\operatorname\{Ann\}_\{R\}(M/IM)$, we will prove that for any integer $n$},
author = {Rezaei, Shahram},
journal = {Archivum Mathematicum},
keywords = {coregular sequence; local homology; weakly colaskerian},
language = {eng},
number = {1},
pages = {31-41},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Finiteness of local homology modules},
url = {http://eudml.org/doc/295083},
volume = {056},
year = {2020},
}

TY - JOUR
AU - Rezaei, Shahram
TI - Finiteness of local homology modules
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 1
SP - 31
EP - 41
AB - Let $I$ be an ideal of Noetherian ring $R$ and $M$ a finitely generated $R$-module. In this paper, we introduce the concept of weakly colaskerian modules and by using this concept, we give some vanishing and finiteness results for local homology modules. Let $I_{M}:=\operatorname{Ann}_{R}(M/IM)$, we will prove that for any integer $n$
LA - eng
KW - coregular sequence; local homology; weakly colaskerian
UR - http://eudml.org/doc/295083
ER -

References

top
  1. Brodmann, M.P., Sharp, R.Y., Local cohomology – An algebric introduction with geometric applications, Cambridge University Press, 1998. (1998) MR1613627
  2. Cuong, N.T., Nam, T.T., On the co-localization, Co-support and Co-associated primes of local homology modules, Vietnam J. Math. 29 (4) (2001), 359–368. (2001) MR1934215
  3. Cuong, N.T., Nam, T.T., 10.1090/S0002-9939-01-06298-0, Proc. Amer. Math. Soc. 130 (7) (2001), 1927–1936. (2001) MR1896024DOI10.1090/S0002-9939-01-06298-0
  4. Cuong, N.T., Nam, T.T., 10.1017/S0305004101005126, Math. Proc. Cambridge Philos. Soc. 131 (2001), 61–72. (2001) MR1833074DOI10.1017/S0305004101005126
  5. Cuong, N.T., Nam, T.T., 10.1016/j.jalgebra.2007.11.030, J. Algebra 319 (2008), 4712–4737. (2008) MR2416740DOI10.1016/j.jalgebra.2007.11.030
  6. Divaani-Aazar, K., Mafi, A., 10.1090/S0002-9939-04-07728-7, Proc. Amer. Math. Soc. 133 (3) (2005), 655–660. (2005) Zbl1103.13010MR2113911DOI10.1090/S0002-9939-04-07728-7
  7. Greenlees, J.P.C., May, J.P., 10.1016/0021-8693(92)90026-I, J. Algebra 149 (1992), 438–453. (1992) MR1172439DOI10.1016/0021-8693(92)90026-I
  8. Macdonald, I.G., 10.1016/0040-9383(62)90104-0, Topology 1 (1962), 213–235. (1962) MR0151491DOI10.1016/0040-9383(62)90104-0
  9. Macdonald, I.G., Secondary representation of modules over a commutative ring, Symposia Mathematica 11 (1973), 23–43. (1973) MR0342506
  10. Melkersson, L., Schenzel, P., The co-localization of an artinian module, Proc. Edinburgh Math. Soc. 38 (1995), 121–131. (1995) MR1317331
  11. Nam, T.T., 10.1142/S1005386708000084, Algebra Colloquium 15 (1) (2008), 83–96. (2008) MR2371580DOI10.1142/S1005386708000084
  12. Nam, T.T., 10.1080/00927870802216396, Comm. Algebra 37 (2009), 1748–1757. (2009) MR2526337DOI10.1080/00927870802216396
  13. Nam, T.T., 10.1080/00927870802578043, Comm. Algebra 38 (2010), 440–453. (2010) MR2598892DOI10.1080/00927870802578043
  14. Nam, T.T., Generalized local homology for artinian modules, Algebra Colloquium 1 (2012), 11205–1212. (2012) MR3073409
  15. Ooishi, A., 10.32917/hmj/1206136213, Hiroshima Math. J. 6 (1976), 573–587. (1976) MR0422243DOI10.32917/hmj/1206136213
  16. Shar, R.Y., Steps in commutative algebra, London Mathematical Society Student Texts, vol. 19, Cambridge University Press, 1990. (1990) MR1070568
  17. Tang, Z., 10.1080/00927879408824928, Comm. Algebra 22 (1994), 1675–1684. (1994) MR1264734DOI10.1080/00927879408824928
  18. Yassemi, S., 10.1080/00927879508825288, Comm. Algebra 23 (1995), 1473–1498. (1995) MR1317409DOI10.1080/00927879508825288
  19. Yen, D.N., Nam, T.T., 10.1142/S0218196719500152, Int. J. Algebra Comput. 29 (3) (2019), 581–601. (2019) MR3955823DOI10.1142/S0218196719500152
  20. Zelinsky, D., 10.2307/2372616, Amer. J. Math. 75 (1953), 79–90. (1953) MR0051832DOI10.2307/2372616
  21. Zöschinger, H., Koatomare Moduln, Math. Z. 170 (1980), 221–232. (1980) MR0564202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.