Growth of weighted volume and some applications
Mirjana Milijević; Luis P. Yapu
Archivum Mathematicum (2020)
- Volume: 056, Issue: 1, page 1-10
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMilijević, Mirjana, and Yapu, Luis P.. "Growth of weighted volume and some applications." Archivum Mathematicum 056.1 (2020): 1-10. <http://eudml.org/doc/295084>.
@article{Milijević2020,
abstract = {We define cut-off functions in order to allow higher growth for Dirichlet energy. Our results are generalizations of the classical Cheng-Yau’s growth conditions of parabolicity. Finally we give some applications to the function theory of Kähler and quaternionic-Kähler manifolds.},
author = {Milijević, Mirjana, Yapu, Luis P.},
journal = {Archivum Mathematicum},
keywords = {volume growth; parabolic manifolds; weighted parabolic manifolds},
language = {eng},
number = {1},
pages = {1-10},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Growth of weighted volume and some applications},
url = {http://eudml.org/doc/295084},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Milijević, Mirjana
AU - Yapu, Luis P.
TI - Growth of weighted volume and some applications
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 1
SP - 1
EP - 10
AB - We define cut-off functions in order to allow higher growth for Dirichlet energy. Our results are generalizations of the classical Cheng-Yau’s growth conditions of parabolicity. Finally we give some applications to the function theory of Kähler and quaternionic-Kähler manifolds.
LA - eng
KW - volume growth; parabolic manifolds; weighted parabolic manifolds
UR - http://eudml.org/doc/295084
ER -
References
top- Cheng, S.Y., Yau, S.T., 10.1002/cpa.3160280303, Comm. Pure Appl. Math. 28 (3) (1975), 333–354. (1975) Zbl0312.53031MR0385749DOI10.1002/cpa.3160280303
- Corlette, K., 10.2307/2946567, Ann. of Math. (2) 135 (1) (1992), 165–182. (1992) MR1147961DOI10.2307/2946567
- Greene, R.E., Wu, H., 10.1007/BFb0063413, Lecture Notes in Math., vol. 699, Springer-Verlag, Berlin and New York, 1979. (1979) MR0521983DOI10.1007/BFb0063413
- Grigoryan, A.A., On the existence of a Green function on a manifold, Uspekhi Mat. Nauk 38 (1983), 161–162, (Russian), English translation: Russian Math. Surveys 38 (1983), no. 1, 190–191. (1983) MR0693728
- Grigoryan, A.A., 10.1090/S0273-0979-99-00776-4, Bull. Amer. Math. Soc. 36 (2) (1999), 135–249. (1999) MR1659871DOI10.1090/S0273-0979-99-00776-4
- Hua, B., Liu, S., Xia, C., 10.2140/pjm.2017.290.381, Pacific J. Math. 290 (2017), 381–402. (2017) MR3681112DOI10.2140/pjm.2017.290.381
- Jost, J., Riemannian geometry and geometric analysis, Springer, Berlin, 2017. (2017) MR3726907
- Karp, L., Subharmonic functions, harmonic mappings and isometric immersions, Seminar on Differential Geometry (Yau, S.T., ed.), Ann. Math. Stud. 102, Princeton, 1982. (1982)
- Kong, S., Li, P., Zhou, D., 10.4310/jdg/1203000269, J. Differential Geom. 78 92) (2008), 295–332. (2008) MR2394025DOI10.4310/jdg/1203000269
- Lam, K-H., 10.4310/MRL.2008.v15.n6.a8, Math. Res. Lett. 15 (6) (2018), 1167–1186. (2018) MR2470392DOI10.4310/MRL.2008.v15.n6.a8
- Li, P., 10.1007/BF01234432, Invent. Math. 99 (1990), 579–600. (1990) MR1032881DOI10.1007/BF01234432
- Li, P., Curvature and function theory on Riemannian manifolds, Surveys in Differential Geometry, vol. 7, International Press, Cambridge, 2002, Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer, pp. 375–432. (2002)
- Munteanu, O., Wang, J., 10.1007/s00208-015-1192-1, Math. Ann. 363 (2015), 893–911. (2015) MR3412346DOI10.1007/s00208-015-1192-1
- Rigolli, M., Setti, A., 10.4171/RMI/302, Rev. Mat. Iberoamerican 17 (2001), 471–521. (2001) MR1900893DOI10.4171/RMI/302
- Ruppenthal, J., 10.1090/proc12718, Proc. Amer. Math. Soc. 144 (2016), 225–233. (2016) MR3415591DOI10.1090/proc12718
- Sampson, J.H., Applications to harmonic maps to Kähler geometry, Complex differential geometry and nonlinear differential equation, Amer. Math. Soc., Providence, RI, Contemp. Math. ed., 1986. (1986) MR0833809
- Siu, Y.T., 10.2307/1971321, Ann. of Math. (2) 112 (1) (1980), 73–111. (1980) MR0584075DOI10.2307/1971321
- Tasayco, D., Zhou, D., 10.1007/s00013-017-1057-9, Arch. Math. (Basel) 109 (2) (2017), 191–200. (2017) MR3673637DOI10.1007/s00013-017-1057-9
- Varopoulos, N.Th., Potential theory and diffusion of Riemannian manifolds, Conference on Harmonic Analysis in honor of Antoni Zygmund, vol. I, II, Wadsworth Math. Ser., Wadsworth, Belmont, Calif., 1983, pp. 821–837. (1983) MR0730112
- Vieira, M., 10.1007/s00013-013-0594-0, Arch. Math. (Basel) 101 (2013), 581–590. (2013) MR3133732DOI10.1007/s00013-013-0594-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.