Composite positive integers whose sum of prime factors is prime
Archivum Mathematicum (2020)
- Volume: 056, Issue: 1, page 49-64
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topLuca, Florian, and Moodley, Damon. "Composite positive integers whose sum of prime factors is prime." Archivum Mathematicum 056.1 (2020): 49-64. <http://eudml.org/doc/295085>.
@article{Luca2020,
abstract = {In this note, we show that the counting function of the number of composite positive integers $n\le x$ such that $\beta (n)=\sum _\{p\mid n\} p$ is a prime is of order of magnitude at least $x/(\log x)^3$ and at most $x/ \log x$.},
author = {Luca, Florian, Moodley, Damon},
journal = {Archivum Mathematicum},
keywords = {primes; applications of sieve methods},
language = {eng},
number = {1},
pages = {49-64},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Composite positive integers whose sum of prime factors is prime},
url = {http://eudml.org/doc/295085},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Luca, Florian
AU - Moodley, Damon
TI - Composite positive integers whose sum of prime factors is prime
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 1
SP - 49
EP - 64
AB - In this note, we show that the counting function of the number of composite positive integers $n\le x$ such that $\beta (n)=\sum _{p\mid n} p$ is a prime is of order of magnitude at least $x/(\log x)^3$ and at most $x/ \log x$.
LA - eng
KW - primes; applications of sieve methods
UR - http://eudml.org/doc/295085
ER -
References
top- Bateman, P.T., Horn, R.A., 10.1090/S0025-5718-1962-0148632-7, Math. Comp. 16 (1962), 363–367. (1962) MR0148632DOI10.1090/S0025-5718-1962-0148632-7
- Chudakov, N., 10.2307/1969127, Ann. of Math. (2) 48 (1947), 515–545. (1947) MR0021021DOI10.2307/1969127
- De Koninck, J.-M., Luca, F., 10.1112/S0025579300000346, Mathematika 52 (2005), 69–77. (2005) MR2261843DOI10.1112/S0025579300000346
- De Koninck, J.-M., Luca, F., 10.1016/j.jnt.2007.01.010, J. Number Theory 128 (2008), 557–563. (2008) MR2389855DOI10.1016/j.jnt.2007.01.010
- De Koninck, J.-M., Luca, F., Analytic number theory. Exploring the anatomy of integers, Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Providence, RI, 2012. (2012) MR2919246
- De Koninck, J.-M., Sitaramachandra, R.R., Sums involving the largest prime divisor of an integer, Acta Arith. 48 (1987), 3–8. (1987) MR0893458
- Erdös, P., Pomerance, C., 10.1007/BF01818569, Aequationes Math. 17 (1978), 311–321. (1978) MR0480303DOI10.1007/BF01818569
- Nelson, C., Penny, D.E., Pomerance, C., 714 and 715, J. Recreational Math. 7 (1974), 87–89. (1974) MR3821619
- Pomerance, C., Ruth–Aaron numbers revisited, Paul Erdös and his Mathematics, vol. 11, János Bolyai Math. Soc., Budapest 1999, Bolyai Soc. Math. Stud., 2002, pp. 567–579. (2002) MR1954715
- Wheeler, F.S., 10.1090/S0002-9947-1990-0963247-X, Trans. Amer. Math. Soc. 318 (1990), 491–523. (1990) MR0963247DOI10.1090/S0002-9947-1990-0963247-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.