Understanding singularitiesin free boundary problems
Xavier Ros-Oton; Joaquim Serra
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana (2019)
- Volume: 4, Issue: 2, page 107-118
- ISSN: 2499-751X
Access Full Article
topAbstract
topHow to cite
topRos-Oton, Xavier, and Serra, Joaquim. "Understanding singularitiesin free boundary problems." Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana 4.2 (2019): 107-118. <http://eudml.org/doc/295088>.
@article{Ros2019,
abstract = {Free boundary problems are those described by PDEs that exhibit a priori unknown (free) interfacesor boundaries. The most classical example is the melting of ice to water (the Stefan problem). In this case, the freeboundary is the liquid-solid interface between ice and water. A central mathematical challenge in this context is to understand the regularity and singularities of free boundaries. In this paper we provide a gentle introduction to this topic by presenting some classical results of Luis Caffarelli, as well as some important recent works due to Alessio Figalli and collaborators.},
author = {Ros-Oton, Xavier, Serra, Joaquim},
journal = {Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana},
language = {eng},
month = {8},
number = {2},
pages = {107-118},
publisher = {Unione Matematica Italiana},
title = {Understanding singularitiesin free boundary problems},
url = {http://eudml.org/doc/295088},
volume = {4},
year = {2019},
}
TY - JOUR
AU - Ros-Oton, Xavier
AU - Serra, Joaquim
TI - Understanding singularitiesin free boundary problems
JO - Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
DA - 2019/8//
PB - Unione Matematica Italiana
VL - 4
IS - 2
SP - 107
EP - 118
AB - Free boundary problems are those described by PDEs that exhibit a priori unknown (free) interfacesor boundaries. The most classical example is the melting of ice to water (the Stefan problem). In this case, the freeboundary is the liquid-solid interface between ice and water. A central mathematical challenge in this context is to understand the regularity and singularities of free boundaries. In this paper we provide a gentle introduction to this topic by presenting some classical results of Luis Caffarelli, as well as some important recent works due to Alessio Figalli and collaborators.
LA - eng
UR - http://eudml.org/doc/295088
ER -
References
top- ALMGREN, F. J., Almgren's big regularity paper. Q-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2, J. E. Taylor, V. Scheffer, eds. World Scientific Monograph Series in Mathematics, 2000. Zbl0985.49001MR1777737
- BAIOCCHI, C., Free boundary problems in the theory of fluid flow through porous media, in Proceedings of the ICM 1974. Zbl0347.76067MR421331
- BARRIOS, B., FIGALLI, A., ROS-OTON, X., Global regularity for the free boundary in the obstacle problem for the fractional Laplacian, Amer. J. Math.140 (2018), 415-447. Zbl1409.35044MR3783214DOI10.1353/ajm.2018.0010
- BARRIOS, B., FIGALLI, A., ROS-OTON, X., Free boundary regularity in the parabolic fractional obstacle problem, Comm. Pure Appl. Math.71 (2018), 2129-2159. MR3861075DOI10.1002/cpa.21745
- BLANCHET, A., On the singular set of the parabolic obstacle problem, J. Differential Equations231 (2006), 656-672. Zbl1121.35145MR2287901DOI10.1016/j.jde.2006.05.013
- CAFFARELLI, L., The regularity of free boundaries in higher dimensions, Acta Math.139 (1977), 155-184. Zbl0386.35046MR454350DOI10.1007/BF02392236
- CAFFARELLI, L., Compactness methods in free boundary problems, Comm. Partial Differential Equations5 (1980), 427-448. Zbl0437.35070MR567780DOI10.1080/0360530800882144
- CAFFARELLI, L., The obstacle problem revisited, J. Fourier Anal. Appl.4 (1998), 383-402. Zbl0928.49030MR1658612DOI10.1007/BF02498216
- CAFFARELLI, L., FIGALLI, A., Regularity of solutions to the parabolic fractional obstacle problem, J. Reine Angew. Math., 680 (2013), 191-233. Zbl1277.35088MR3100955DOI10.1515/crelle.2012.036
- CAFFARELLI, L., KOHN, R., NIRENBERG, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math.35 (1982), 771-831. Zbl0509.35067MR673830DOI10.1002/cpa.3160350604
- CAFFARELLI, L., RIVIÈRE, N. M., Asymptotic behavior of free boundaries at their singular points, Ann. of Math.106 (1977), 309-317. Zbl0364.35041MR463690DOI10.2307/1971098
- CAFFARELLI, L., SALSA, S., A Geometric Approach to Free Boundary Problems, Graduate Studies in Mathematics, vol. 68, AMS2005. Zbl1083.35001MR2145284DOI10.1090/gsm/068
- CAFFARELLI, L., SALSA, S., SILVESTRE, L., Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math.171 (2008), 425-461. Zbl1148.35097MR2367025DOI10.1007/s00222-007-0086-6
- CARRILLO, J. A., DELGADINO, M. G., MELLET, A., Regularity of local minimizers of the interaction energy via obstacle problems, Comm. Math. Phys.343 (2016), 747-781. Zbl1337.49066MR3488544DOI10.1007/s00220-016-2598-7
- COLOMBO, M., SPOLAOR, L., VELICHKOV, B., A logarithmic epiperimetric inequality for the obstacle problem, Geom. Funct. Anal.28 (2018), 1029-1061. Zbl1428.49042MR3820438DOI10.1007/s00039-018-0451-1
- CONT, R., TANKOV, P., Financial Modelling With Jump Processes, Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004. Zbl1052.91043MR2042661
- DE SILVA, D., SAVIN, O., Boundary Harnack estimates in slit domains and applications to thin free boundary problems, Rev. Mat. Iberoam.32 (2016), 891-912. Zbl1356.35020MR3556055DOI10.4171/RMI/902
- DUVAUT, G., Résolution d'un problème de Stefan (Fusion d'un bloc de glace a zero degrées), C. R. Acad. Sci. Paris276 (1973), 1461-1463. Zbl0258.35037MR328346
- DUVAUT, G., LIONS, J. L., Inequalities in Mechanics and Physics, Springer, 1976. Zbl0331.35002MR521262
- FERNÁNDEZ-REAL, X., JHAVERI, Y., On the singular set in the thin obstacle problem: higher order blow-ups and the very thin obstacle problem, preprint arXiv (2018). MR1463593DOI10.1088/0266-5611/13/4/011
- FERNÁNDEZ-REAL, X., ROS-OTON, X., The obstacle problem for the fractional Laplacian with critical drift, Math. Ann.371 (2018), 1683-1735. Zbl1395.35228MR3831283DOI10.1007/s00208-017-1600-9
- FIGALLI, A., Regularity of interfaces in phase transitions via obstacle problems, Prooceedings of the International Congress of Mathematicians (2018). MR3966720
- FIGALLI, A., SERRA, J., On the fine structure of the free boundary for the classical obstacle problem, Invent. Math.215 (2019), 311-366. Zbl1408.35228MR3904453DOI10.1007/s00222-018-0827-8
- FIGALLI, A., ROS-OTON, X., SERRA, J., On the singular set in the Stefan problem and a conjecture of Schaeffer, forthcoming (2019).
- FOCARDI, M., SPADARO, E., On the measure and the structure of the free boundary of the lower dimensional obstacle problem, Arch. Rat. Mech. Anal.230 (2018), 125-184. Zbl1405.35257MR3840912DOI10.1007/s00205-018-1242-4
- FOCARDI, M., SPADARO, E., The local structure of the free boundary in the fractional obstacle problem, forthcoming. Zbl1405.35257
- FRIEDMAN, A., Variational Principles and Free Boundary Problems, Wiley, New York, 1982. Zbl0564.49002MR679313
- GAROFALO, N., PETROSYAN, A., Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math.177 (2009), no. 2, 414-461. Zbl1175.35154MR2511747DOI10.1007/s00222-009-0188-4
- GAROFALO, N., PETROSYAN, A., POP, C. A., SMIT VEGA GARCIA, M., Regularity of the free boundary for the obstacle problem for the fractional Laplacian with drift, Ann. Inst. H. Poincaré Anal. Non Linéaire34 (2017), 533-570. MR3633735DOI10.1016/j.anihpc.2016.03.001
- GAROFALO, N., ROS-OTON, X., Structure and regularity of the singular set in the obstacle problem for the fractional Laplacian, Rev. Mat. Iberoam. (2019), in press. Zbl07144967MR4018099DOI10.4171/rmi/1087
- GIUSTI, E., Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics80, Birkhäuser, 1984. Zbl0545.49018MR775682DOI10.1007/978-1-4684-9486-0
- JHAVERI, Y., NEUMAYER, R., Higher regularity of the free boundary in the obstacle problem for the fractional Laplacian, Adv. Math.311 (2017), 748-795. Zbl1372.35061MR3628230DOI10.1016/j.aim.2017.03.006
- KINDERLEHRER, D., NIRENBERG, L., Regularity in free boundary problems, Ann. Sc. Norm. Sup. Pisa (1977), 373-391. Zbl0352.35023MR440187
- KINDERLEHRER, D., STAMPACCHIA, G., An Introduction to Variational Inequalities and Their Applications, SIAM, 1980. Zbl0457.35001MR567696
- KOCH, H., PETROSYAN, A., SHI, W., Higher regularity of the free boundary in the elliptic Signorini problem, Nonlinear Anal.126 (2015), 3-44. Zbl1329.35362MR3388870DOI10.1016/j.na.2015.01.007
- KOCH, H., RÜLAND, A., SHI, W., Higher regularity for the fractional thin obstacle problem, preprint arXiv (2016). Zbl1423.35465MR3692912
- LAMÉ, G., CLAPEYRON, B. P., Mémoire sur la solidification par refroidissement d'un globe liquide, Ann. Chimie Physique47 (1831), 250-256.
- LINDGREN, E., MONNEAU, R., Pointwise regularity of the free boundary for the parabolic obstacle problem, Calc. Var. Partial Differential Equations54 (2015), 299-347. Zbl1327.35455MR3385162DOI10.1007/s00526-014-0787-9
- MERTON, R., Option pricing when the underlying stock returns are discontinuous, J. Finan. Econ.5 (1976), 125-144. Zbl1131.91344
- MONNEAU, R., On the number of singularities for the obstacle problem in two dimensions, J. Geom. Anal.13 (2003), 359-389. Zbl1041.35093MR1967031DOI10.1007/BF02930701
- PETROSYAN, A., POP, C. A., Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift, J. Funct. Anal.268 (2015), 417-472. Zbl1366.35223MR3283160DOI10.1016/j.jfa.2014.10.009
- PETROSYAN, A., SHAHGHOLIAN, H., URALTSEVA, N., Regularity of Free Boundaries in Obstacle-type Problems, volume 136 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012. Zbl1254.35001MR2962060DOI10.1090/gsm/136
- RODRIGUES, J. F., Obstacle Problems in Mathematical Physics, North-Holland Mathematics Studies, vol. 134, North-Holland Publishing Co., Amsterdam, 1987. Zbl0606.73017MR880369
- SAKAI, M., Regularity of a boundary having a Schwarz function. Acta Math.166 (1991), 263-297. Zbl0728.30007MR1097025DOI10.1007/BF02398888
- SAKAI, M., Regularity of free boundaries in two dimensions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), no. 3, 323-339. Zbl0851.35022MR1256071
- SCHAEFFER, D. G., An example of generic regularity for a nonlinear elliptic equation, Arch. Rat. Mech. Anal.57 (1974), 134-141. Zbl0319.35036MR387810DOI10.1007/BF00248415
- SCHAEFFER, D. G., Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup. Pisa4 (1977), 133-144. Zbl0354.35033MR516201
- SERFATY, , Coulomb Gases and Ginzburg-Landau Vortices, Zurich Lectures in Advanced Mathematics, EMS books, 2015. MR3309890DOI10.4171/152
- SILVESTRE, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math.60 (2007), 67-112. Zbl1141.49035MR2270163DOI10.1002/cpa.20153
- SIMONS, J. H., Minimal varieties in riemannian manifolds, Ann. of Math.88 (1968) 62-105. Zbl0181.49702MR233295DOI10.2307/1970556
- SMALE, N., Generic regularity of homologically area minimizing hypersurfaces in eight dimensional manifolds, Comm. Anal. Geom.1 (1993), 217-228. Zbl0843.58027MR1243523DOI10.4310/CAG.1993.v1.n2.a2
- STEFAN, J., Ueber einige Probleme der Theorie der Wärmeleitung, Wien. Ber.98 (1889), 473-484. Zbl21.1197.01
- STEFAN, J., Ueber die Theorie der Eisbildung, insbesondere ueber die Eisbildung im Polarmeere, Ann. Physik Chemie42 (1891), 269-286. Zbl23.1188.04MR1546138DOI10.1007/BF01692459
- WEISS, G., A homogeneity improvement approach to the obstacle problem, Invent. Math.138 (1999) 23-50. Zbl0940.35102MR1714335DOI10.1007/s002220050340
- WEISS, G., Self-similar blow-up and Hausdorff dimension estimates for a class of parabolic free boundary problems, SIAM J. Math. Anal.30 (1999) 623-644. Zbl0922.35193MR1677947DOI10.1137/S0036141097327409
- WHITE, B., The size of the singular set in mean curvature flow of mean-convex sets, J. Amer. Math. Soc.13 (2000), 665-695. Zbl0961.53039MR1758759DOI10.1090/S0894-0347-00-00338-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.