Many Faces of Lattice Tolerances

Joanna Grygiel

Bulletin of the Section of Logic (2019)

  • Volume: 48, Issue: 4
  • ISSN: 0138-0680

Abstract

top
Our aim is to overview and discuss some of the most popular approaches to the notion of a tolerance relation in algebraic structures with the special emphasis on lattices.

How to cite

top

Joanna Grygiel. "Many Faces of Lattice Tolerances." Bulletin of the Section of Logic 48.4 (2019): null. <http://eudml.org/doc/295508>.

@article{JoannaGrygiel2019,
abstract = {Our aim is to overview and discuss some of the most popular approaches to the notion of a tolerance relation in algebraic structures with the special emphasis on lattices.},
author = {Joanna Grygiel},
journal = {Bulletin of the Section of Logic},
keywords = {lattice; tolerance; congruence; covering system; gluing},
language = {eng},
number = {4},
pages = {null},
title = {Many Faces of Lattice Tolerances},
url = {http://eudml.org/doc/295508},
volume = {48},
year = {2019},
}

TY - JOUR
AU - Joanna Grygiel
TI - Many Faces of Lattice Tolerances
JO - Bulletin of the Section of Logic
PY - 2019
VL - 48
IS - 4
SP - null
AB - Our aim is to overview and discuss some of the most popular approaches to the notion of a tolerance relation in algebraic structures with the special emphasis on lattices.
LA - eng
KW - lattice; tolerance; congruence; covering system; gluing
UR - http://eudml.org/doc/295508
ER -

References

top
  1. [1] M. Arbib, Tolerance automata, Kybernetika, Vol. 3 (1967), pp. 223–233. 
  2. [2] H. Poincaré (Author) and J. W. Bolduc (Translator), Mathematics and Science: Last essays (1913), Kessinger Publishing, 2010. 
  3. [3] H. J. Bandelt, Tolerance relations of lattices, Bulletin of the Australian Mathematical Society, Vol. 23 (1981), pp. 367–381. https://doi.org/10.1017/S0004972700007255 
  4. [4] I. Chajda, Algebraic Theory of Tolerance Relations, Univerzita Palackého Olomouc, Olomouc, 1991. 
  5. [5] I. Chajda, G. Czédli, and R. Halaš, Independent joins of tolerance factorable varieties, Algebra Universalis, Vol. 69 (2013), pp. 83–92. https://doi.org/10.1007/s00012-012-0213-0 
  6. [6] I. Chajda, G. Czédli, R. Halaš, and P. Lipparini, Tolerances as images of congruences in varieties defined by linear identities, Algebra Universalis, Vol. 69 (2013), pp. 167–169. https://doi.org/10.1007/s00012-013-0219-2 
  7. [7] I. Chajda and J. Duda, Blocks of binary relations, Annales Universitatis Scientiarium Budapestinensis, Sectio Mathematica, Vol. 13–14 (1979–1980), pp. 3–9. 
  8. [8] I. Chajda, J. Niederle, and B. Zelinka, On existence conditions for compatible tolerances, Czechoslovak Mathematical Journal, Vol. 2, (1976), pp. 304–311. 
  9. [9] I. Chajda and B. Zelinka, Lattices of tolerances, Časopis pro pěstování matematiky, Vol. 102 (1977), pp. 10–24. 
  10. [10] G. Czédli, Factor lattices by tolerances, Acta Scientiarum Mathematicarum (Szeged), Vol. 44 (1982), pp. 35–42. 
  11. [11] G. Czédli and G. Grätzer, Lattice tolerances and congruences, Algebra Universalis, Vol. 66 (2011), pp. 5–6. https://doi.org/10.1007/s00012-011-0139-y 
  12. [12] G. Czédli and E. W. Kiss, Varieties whose tolerances are homomorphic images of their congruences, Bulletin of the Australian Mathematical Society, Vol. 87 (2013), pp. 326–338. https://doi.org/10.1017/S0004972712000603 
  13. [13] A. Day and Ch. Herrmann, Gluings of modular lattices, Order, Vol. 5 (1988), pp. 85–101. https://doi.org/10.1007/BF00143900 
  14. [14] A. Day and B. Jónsson, Non-arguesian configurations and gluings of modular lattices, Algebra Universalis, Vol. 26 (1989), pp. 208–215. https://doi.org/10.1007/BF01236867 
  15. [15] R. P. Dilworth, Lattices with unique irreducible decompositions, Annals of Mathematics, Vol. 41, No. 2 (1940), pp. 771–777. https://doi.org/10.2307/1968857 
  16. [16] E. Fried and G. Grätzer, Notes on tolerance relations of lattices: A conjecture of R.N. McKenzie, Journal of Pure and Applied Algebra, Vol. 68 (1990), pp. 127–134. https://doi.org/10.1016/0022-4049(90)90138-8 
  17. [17] B. Ganter and R. Wille, Formal concept analysis. Mathematical Foundations, Springer–Verlag, 1999. https://doi.org/10.1007/978-3-642-59830-2 
  18. [18] G. Grätzer and G. H. Wenzel, Notes on tolerance relations on lattices, Acta Scientiarum Mathematicarum (Szeged), Vol. 54 (1990), pp. 229–240. 
  19. [19] J. Grygiel, The concept of gluing for lattices, Wydawnictwo WSP, Cz¸estochowa, 2004. 
  20. [20] J. Grygiel and S. Radeleczki, On the tolerance lattice of tolerance factors, Acta Mathematica Hungarica, Vol. 141, No. 3 (2013), pp. 220–237. https://doi.org/10.1007/s10474-013-0340-x 
  21. [21] Ch. Herrmann, S-verklebte Summen von Verbänden, Mathematische Zeitschrift, Vol. 130 (1973), pp. 255–274. https://doi.org/10.1007/BF01246623 
  22. [22] Ch. Herrmann, Alan Day’s work on modular and Arguesian lattices, Algebra Universalis, Vol. 34, No. 3 (1995), pp. 35–60. https://doi.org/10.1007/BF01200489 
  23. [23] D. Hobby and R. McKenzie, The Structure of Finite Algebras, volume 76 of Contemporary Mathematics, American Mathematical Society, 2000. http://dx.doi.org/10.1090/conm/076 
  24. [24] J. Järvinen and S. Radeleczki, Rough sets determined by tolerances, International Journal of Approximate Reasoning, Vol. 55, No. 6 (2014), pp. 1419–1438. https://doi.org/10.1016/j.ijar.2013.12.005 
  25. [25] B. Jónsson, Algebras whose congruence lattices are distributive, Mathematica Scandinavia, Vol. 21, No. 1 (1967), pp. 110–121. https://doi.org/10.7146/math.scand.a-10850 
  26. [26] J. F. Peters and P. Wasilewski, Tolerance spaces: Origins, theoretical aspects and applications, Information Sciences: Informatics and Computer Science, Intelligent Systems, Applications, Vol. 195 (2012), pp. 211–225. https://doi.org/10.1016/j.ins.2012.01.023 
  27. [27] J. Pogonowski, Tolerance spaces with applications to linguistics, Wydawnictwo Naukowe UAM, Poznan, 1983. 
  28. [28] J. A. Szrejder, Równosc, podobienstwo, porzadek, Wydawnictwa Naukowo-Techniczne, Warszawa, 1975. 
  29. [29] E. Ch. Zeeman, The topology of the brain and visual perception, [in:] M. K. Fort (ed.), Topology of 3-Manifolds and related topics, New Jersey, 1962. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.