Grzegorczyk Algebras Revisited
Bulletin of the Section of Logic (2018)
- Volume: 47, Issue: 2
- ISSN: 0138-0680
Access Full Article
topAbstract
topHow to cite
topMichał M. Stronkowski. "Grzegorczyk Algebras Revisited." Bulletin of the Section of Logic 47.2 (2018): null. <http://eudml.org/doc/295539>.
@article{MichałM2018,
abstract = {We provide simple algebraic proofs of two important facts, due to Zakharyaschev and Esakia, about Grzegorczyk algebras.},
author = {Michał M. Stronkowski},
journal = {Bulletin of the Section of Logic},
keywords = {Grzegorczyk algebras; free Boolean extensions of Heyting algebras; stable homomorphisms},
language = {eng},
number = {2},
pages = {null},
title = {Grzegorczyk Algebras Revisited},
url = {http://eudml.org/doc/295539},
volume = {47},
year = {2018},
}
TY - JOUR
AU - Michał M. Stronkowski
TI - Grzegorczyk Algebras Revisited
JO - Bulletin of the Section of Logic
PY - 2018
VL - 47
IS - 2
SP - null
AB - We provide simple algebraic proofs of two important facts, due to Zakharyaschev and Esakia, about Grzegorczyk algebras.
LA - eng
KW - Grzegorczyk algebras; free Boolean extensions of Heyting algebras; stable homomorphisms
UR - http://eudml.org/doc/295539
ER -
References
top- [1] G. Bezhanishvili and N. Bezhanishvili, An algebraic approach to canonical formulas: modal case, Studia Logica 99 (2011), pp. 93–125.
- [2] G. Bezhanishvili, N. Bezhanishvili and R. Iemhoff, Stable canonical rules, Journal of Symbolic Logic 81 (2016), pp. 284–315.
- [3] W. J. Blok, Varieties of interior algebras, PhD thesis, University of Amsterdam (1976), URL=http://www.illc.uva.nl/Research/Dissertations/HDS-01-Wim_Blok.text.pdf
- [4] W. J. Blok and Ph. Dwinger, Equational classes of closure algebras. I, Indagationes Mathematicae 37 (1975), pp. 189–198.
- [5] A. Chagrov and M. Zakharyaschev, Modal logic, Oxford University Press, New York, 1997.
- [6] A. Chagrov and M. Zakharyashchev, Modal companions of intermediate propositional logics, Studia Logica 51 (1992), pp. 49–82.
- [7] L. L. Esakia, On the theory of modal and superintuitionistic systems, [in:] V. A. Smirnov (ed.), Logical inference, Nauka, Moscow (1979), pp. 147–172 (in Russian).
- [8] L. L. Esakia, On the variety of Grzegorczyk algebras, [in:] Studies in nonclassical logics and set theory, Nauka, Moscow (1979), pp. 257–287 (in Russian).
- [9] S. Ghilardi, Continuity, freeness, and filtrations, Journal of Applied Non-Classical Logics 20 (2010), pp. 193–217.
- [10] S. Givant and P. Halmos, Introduction to Boolean algebras, Springer, New York, 2009.
- [11] A. Grzegorczyk, Some relational systems and the associated topological spaces, Fundamenta Mathematicae 60 (1967), pp. 223–231.
- [12] D. C. Makinson, On the number of ultrafilters of an infinite boolean algebra, Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 15 (1969), pp. 121–122.
- [13] L. L. Maksimova and V. V. Rybakov, The lattice of normal modal logics, Algebra and Logic 13 (1974), pp. 105–122.
- [14] J. C. C. McKinsey and A. Tarski, On closed elements in closure algebras, Annals of Mathematics 47 (1946), pp. 122–162.
- [15] A. Y. Muravitsky, The embedding theorem: its further developments and consequences. Part I, Notre Dame Journal of Formal Logic 47 (2006),pp. 525–540.
- [16] M. M. Stronkowski, Free Boolean extensions of Heyting algebras, Advances in Modal Logic, Budapest, 2016, pp. 122–126 (Extended abstract).
- [17] M. M. Stronkowski, On the Blok-Esakia theorem for universal classes, arXiv:1810.09286.
- [18] F. Wolter and M. Zakharyaschev, On the Blok-Esakia theorem, [in:] G. Bezhanishvili (ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics, Springer Netherlands, Dordrecht (2014), pp. 99–118.
- [19] M. Zakharyaschev, Canonical formulas for K4. Part I. Basic results Journal of Symbolic Logic 57 (1992), pp. 1377–1402.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.