Two Infinite Sequences of Pre-Maximal Extensions of the Relevant Logic E

Lidia Typańska-Czajka

Bulletin of the Section of Logic (2019)

  • Volume: 48, Issue: 1
  • ISSN: 0138-0680

Abstract

top
The only maximal extension of the logic of relevant entailment E is the classical logic CL. A logic L ⊆ [E,CL] called pre-maximal if and only if L is a coatom in the interval [E,CL]. We present two denumerable infinite sequences of premaximal extensions of the logic E. Note that for the relevant logic R there exist exactly three pre-maximal logics, i.e. coatoms in the interval [R,CL].

How to cite

top

Lidia Typańska-Czajka. "Two Infinite Sequences of Pre-Maximal Extensions of the Relevant Logic E." Bulletin of the Section of Logic 48.1 (2019): null. <http://eudml.org/doc/295540>.

@article{LidiaTypańska2019,
abstract = {The only maximal extension of the logic of relevant entailment E is the classical logic CL. A logic L ⊆ [E,CL] called pre-maximal if and only if L is a coatom in the interval [E,CL]. We present two denumerable infinite sequences of premaximal extensions of the logic E. Note that for the relevant logic R there exist exactly three pre-maximal logics, i.e. coatoms in the interval [R,CL].},
author = {Lidia Typańska-Czajka},
journal = {Bulletin of the Section of Logic},
keywords = {relevant logic; non-classical logics; lattice; universal algebra},
language = {eng},
number = {1},
pages = {null},
title = {Two Infinite Sequences of Pre-Maximal Extensions of the Relevant Logic E},
url = {http://eudml.org/doc/295540},
volume = {48},
year = {2019},
}

TY - JOUR
AU - Lidia Typańska-Czajka
TI - Two Infinite Sequences of Pre-Maximal Extensions of the Relevant Logic E
JO - Bulletin of the Section of Logic
PY - 2019
VL - 48
IS - 1
SP - null
AB - The only maximal extension of the logic of relevant entailment E is the classical logic CL. A logic L ⊆ [E,CL] called pre-maximal if and only if L is a coatom in the interval [E,CL]. We present two denumerable infinite sequences of premaximal extensions of the logic E. Note that for the relevant logic R there exist exactly three pre-maximal logics, i.e. coatoms in the interval [R,CL].
LA - eng
KW - relevant logic; non-classical logics; lattice; universal algebra
UR - http://eudml.org/doc/295540
ER -

References

top
  1. W. Ackermann, Begründung Einer Strengen Implikation, The Journal of Symbolic Logic, Vol. 21, 2 (1956), pp. 113–128. 
  2. A. R. Anderson, N. D. Belnap, Jr., Entailment. The Logic of relevance and necessity, Princeton University Press, Vol. I (1975). 
  3. N. D. Belnap, Jr., Intesional Models for First Degree Formula, The Journal of Symbolic Logic, Vol. 32, 1 (1967), pp. 1–22. 
  4. W. J. Blok, D. Pigozzi, Algbebraizable logics, Memoirs of the American Mathematical Society, 1989. 
  5. J. M. Font, G. B. Rodriguez, Note on algebraic models for relevance logic, Zeitschrift für Matematische Logik und Grundlagen der Mathematik, Vol. 36, 6 (1990), pp. 535–540. 
  6. W. Dziobiak, There are 2ℵ0 Logics with the Relevance Principle Between R and RM, Studia Logica, Vol. XLII (1983), pp. 49–61. 
  7. L. Maksimowa, Implication lattices, Algebra and Logic, Vol. 12, 4 (1973), pp. 445–467. 
  8. L. Maksimowa, O Modeljach iscislenija E, Algebra and Logic, Vol. 6, 6 (1967), pp. 5–20. 
  9. R. M. Martin, Twenty-Third Annual Meeting of the Association for Symbolic Logic, The Journal of Symbolic Logic, Vol. 23, 4 (1958), pp. 456–461. 
  10. R. K. Meyer, E and S4, Notre Dame Journal of Formal Logic, Vol. XI, 2 (1970), pp. 181–199. 
  11. K. Świrydowicz, There exists exactly two maximal strictly relevant extensions of the relevant logic R, The Journal of Symbolic Logic, Vol. 64, 3 (1999), pp. 1125–1154. 
  12. K. Świrydowicz, A Remark on the Maximal Extensions of the Relevant Logic R, Reports on Mathematical Logic, 29 (1995), pp. 19–33. 
  13. M. Tokarz, Essays in matrix semantics of relevant logics, The Institute of Philosophy and Sociology of the Polish Academy of Sciences, Warsaw 1980. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.