An Investigation into Intuitionistic Logic with Identity
Szymon Chlebowski; Dorota Leszczyńska-Jasion
Bulletin of the Section of Logic (2019)
- Volume: 48, Issue: 4
- ISSN: 0138-0680
Access Full Article
topAbstract
topHow to cite
topSzymon Chlebowski, and Dorota Leszczyńska-Jasion. "An Investigation into Intuitionistic Logic with Identity." Bulletin of the Section of Logic 48.4 (2019): null. <http://eudml.org/doc/295545>.
@article{SzymonChlebowski2019,
abstract = {We define Kripke semantics for propositional intuitionistic logic with Suszko’s identity (ISCI). We propose sequent calculus for ISCI along with cut-elimination theorem. We sketch a constructive interpretation of Suszko’s propositional identity connective.},
author = {Szymon Chlebowski, Dorota Leszczyńska-Jasion},
journal = {Bulletin of the Section of Logic},
keywords = {Non-Fregean logics; intuitionistic logic; admissibility of cut; propositional identity; congruence},
language = {eng},
number = {4},
pages = {null},
title = {An Investigation into Intuitionistic Logic with Identity},
url = {http://eudml.org/doc/295545},
volume = {48},
year = {2019},
}
TY - JOUR
AU - Szymon Chlebowski
AU - Dorota Leszczyńska-Jasion
TI - An Investigation into Intuitionistic Logic with Identity
JO - Bulletin of the Section of Logic
PY - 2019
VL - 48
IS - 4
SP - null
AB - We define Kripke semantics for propositional intuitionistic logic with Suszko’s identity (ISCI). We propose sequent calculus for ISCI along with cut-elimination theorem. We sketch a constructive interpretation of Suszko’s propositional identity connective.
LA - eng
KW - Non-Fregean logics; intuitionistic logic; admissibility of cut; propositional identity; congruence
UR - http://eudml.org/doc/295545
ER -
References
top- [1] S. L. Bloom and R. Suszko, Investigations into the sentential calculus with identity, Notre Dame Journal of Formal Logic, Vol. 13, No. 3 (1972), pp. 289–308. http://dx.doi.org/10.1305/ndjfl/1093890617
- [2] J. G. Granström, Treatise on intuitionistic type theory, Springer Science & Business Media, Dordrecht, 2011. http://dx.doi.org/10.1007/978-94-007-1736-7
- [3]J. R. Hindley, Basic simple type theory, Cambridge University Press, Cambridge, 1997. https://doi.org/10.1017/CBO9780511608865
- [4] S. C. Kleene, Introduction to Metamathematics, Amsterdam: North-Holland Publishing Co.; Groningen: P. Noordhoff N.V., 1952.
- [5] P. Łukowski, Intuitionistic sentential calculus with identity, Bulletin of the Section of Logic, Vol. 19, No. 3 (1990), pp. 92–99.
- [6] S. Negri and J. von Plato, Cut elimination in the presence of axioms, Bulletin of Symbolic Logic, Vol. 4, No. 04 (1998), pp. 418–435. https://doi.org/10.2307/420956
- [7] S. Negri and J. von Plato, Structural Proof Theory, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1017/CBO9780511527340
- [8] S. Negri and J. von Plato, Proof Analysis: a Contribution to Hilbert’s Last Problem, Cambridge University Press, Cambridge, 2011.
- [9] S. Negri, J. von Plato, and T. Coquand, Proof-theoretical analysis of order relations, Archive for Mathematical Logic, Vol. 43, No. 3 (2004), pp. 297–309. https://doi.org/10.1007/s00153-003-0209-8
- [10] R. Suszko, Abolition of the Fregean axiom, [in:] R. Parikh (ed.), Logic Colloquium, pp. 169–239, Berlin, Heidelberg, 1975, Springer. https://doi.org/10.1007/BFb0064874
- [11] A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Camridge University Press, Cambridge, second edition, 2000. https://doi.org/10.1017/CBO9781139168717
- [12] L. Viganò, Labelled non-classical logics, Kluwer Academic Publishers, Boston, 2000. https://doi.org/10.1007/978-1-4757-3208-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.