Some Algebraic and Algorithmic Problems in Acoustocerebrography

Adam Kolany; Miroslaw Wrobel

Bulletin of the Section of Logic (2016)

  • Volume: 45, Issue: 3/4
  • ISSN: 0138-0680

Abstract

top
Progress in the medical diagnostic is relentlessly pushing the measurement technology as well with its intertwined mathematical models and solutions. Mathematics has applications to many problems that are vital to human health but not for all. In this article we describe how the mathematics of acoustocerebrography has become one of the most important applications of mathematics to the problems of brain monitoring as well we will show some algebraic problems which still have to be solved. Acoustocerebrography ([4, 1]) is a set of techniques of visualizing the state of (human) brain tissue and its changes with use of ultrasounds, which mainly rely on a relation between the tissue density and speed of propagation for ultrasound waves in this medium. Propagation speed or, equivalently, times of arriving for an ultrasound pulse, can be inferred from phase relations for various frequencies. Since, due to Kramers-Kronig relations, the propagation speeds depend significantly on the frequency of investigated waves, we consider multispectral wave packages of the form W (n) = ∑Hh=1 Ah ·  sin(2π ·fh  ·  n/F +  ψh), n = 0, . . . , N – 1 with appropriately chosen frequencies fh, h = 1, . . . ,H, amplifications Ah, h = 1, . . . ,H, start phases ψh, h = 1, . . . , H and sampling frequency F. In this paper we show some problems of algebraic and, to some extend, algorithmic nature which raise up in this topic. Like, for instance, the influence of relations between the signal length and frequency values on the error on estimated phases or on neutralizing alien frequencies. Another problem is finding appropriate initial phases for avoiding improper distributions of peaks in the resulting signal or finding a stable algorithm of phase unwinding which is resistant to sudden random disruptions.

How to cite

top

Adam Kolany, and Miroslaw Wrobel. "Some Algebraic and Algorithmic Problems in Acoustocerebrography." Bulletin of the Section of Logic 45.3/4 (2016): null. <http://eudml.org/doc/295562>.

@article{AdamKolany2016,
abstract = {Progress in the medical diagnostic is relentlessly pushing the measurement technology as well with its intertwined mathematical models and solutions. Mathematics has applications to many problems that are vital to human health but not for all. In this article we describe how the mathematics of acoustocerebrography has become one of the most important applications of mathematics to the problems of brain monitoring as well we will show some algebraic problems which still have to be solved. Acoustocerebrography ([4, 1]) is a set of techniques of visualizing the state of (human) brain tissue and its changes with use of ultrasounds, which mainly rely on a relation between the tissue density and speed of propagation for ultrasound waves in this medium. Propagation speed or, equivalently, times of arriving for an ultrasound pulse, can be inferred from phase relations for various frequencies. Since, due to Kramers-Kronig relations, the propagation speeds depend significantly on the frequency of investigated waves, we consider multispectral wave packages of the form W (n) = ∑Hh=1 Ah ·  sin(2π ·fh  ·  n/F +  ψh), n = 0, . . . , N – 1 with appropriately chosen frequencies fh, h = 1, . . . ,H, amplifications Ah, h = 1, . . . ,H, start phases ψh, h = 1, . . . , H and sampling frequency F. In this paper we show some problems of algebraic and, to some extend, algorithmic nature which raise up in this topic. Like, for instance, the influence of relations between the signal length and frequency values on the error on estimated phases or on neutralizing alien frequencies. Another problem is finding appropriate initial phases for avoiding improper distributions of peaks in the resulting signal or finding a stable algorithm of phase unwinding which is resistant to sudden random disruptions.},
author = {Adam Kolany, Miroslaw Wrobel},
journal = {Bulletin of the Section of Logic},
keywords = {ACG; Acoustocerebrography; Stroke; Brain Monitoring; Neurology; Signal processing; multispectral signal decomposition; matrix condition; error estimation; phase unwinding},
language = {eng},
number = {3/4},
pages = {null},
title = {Some Algebraic and Algorithmic Problems in Acoustocerebrography},
url = {http://eudml.org/doc/295562},
volume = {45},
year = {2016},
}

TY - JOUR
AU - Adam Kolany
AU - Miroslaw Wrobel
TI - Some Algebraic and Algorithmic Problems in Acoustocerebrography
JO - Bulletin of the Section of Logic
PY - 2016
VL - 45
IS - 3/4
SP - null
AB - Progress in the medical diagnostic is relentlessly pushing the measurement technology as well with its intertwined mathematical models and solutions. Mathematics has applications to many problems that are vital to human health but not for all. In this article we describe how the mathematics of acoustocerebrography has become one of the most important applications of mathematics to the problems of brain monitoring as well we will show some algebraic problems which still have to be solved. Acoustocerebrography ([4, 1]) is a set of techniques of visualizing the state of (human) brain tissue and its changes with use of ultrasounds, which mainly rely on a relation between the tissue density and speed of propagation for ultrasound waves in this medium. Propagation speed or, equivalently, times of arriving for an ultrasound pulse, can be inferred from phase relations for various frequencies. Since, due to Kramers-Kronig relations, the propagation speeds depend significantly on the frequency of investigated waves, we consider multispectral wave packages of the form W (n) = ∑Hh=1 Ah ·  sin(2π ·fh  ·  n/F +  ψh), n = 0, . . . , N – 1 with appropriately chosen frequencies fh, h = 1, . . . ,H, amplifications Ah, h = 1, . . . ,H, start phases ψh, h = 1, . . . , H and sampling frequency F. In this paper we show some problems of algebraic and, to some extend, algorithmic nature which raise up in this topic. Like, for instance, the influence of relations between the signal length and frequency values on the error on estimated phases or on neutralizing alien frequencies. Another problem is finding appropriate initial phases for avoiding improper distributions of peaks in the resulting signal or finding a stable algorithm of phase unwinding which is resistant to sudden random disruptions.
LA - eng
KW - ACG; Acoustocerebrography; Stroke; Brain Monitoring; Neurology; Signal processing; multispectral signal decomposition; matrix condition; error estimation; phase unwinding
UR - http://eudml.org/doc/295562
ER -

References

top
  1. [1] M. Bogdan, et al., Computer Aided Multispectral Ultrasound Diagnostics Brain Health Monitoring System Based on Acoustocerebrography, XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016, IFMBE Proceedings Volume 57. 
  2. [2] M. O’Donnel, E. T. Jayess and J. G. Miller, Kramers-Kronig relationship between ultrasonic attenuation and phase velocity, J. Acoust. Soc. Am. 69(3), March 1981. 
  3. [3] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer Science & Business Media, March 20. 
  4. [4] M. Wrobel, et al., On ultrasound classification of stroke risk factors from randomly chosen respondents using non-invasive multispectral ultrasonic brain measurements and adaptive profiles, Biocybern Biomed Eng (2015), http://dx.doi.org/10.1016/j.bbe.2015.10.004 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.