Characterization of Birkhoff’s Conditions by Means of Cover-Preserving and Partially Cover-Preserving Sublattices
Bulletin of the Section of Logic (2016)
- Volume: 45, Issue: 3/4
- ISSN: 0138-0680
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Birkhoff, T.C. Bartee, Modern applied algebra, McGraw-Hill Book Company XII, New York etc. (1970).
- [2] P. Crawley, R.P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1973).
- [3] E. Fried, G. Gr¨atzer, H. Lakser, Projective geometries as cover-preserving sublattices, Algebra Universalis 27 (1990), pp. 270–278.
- [4] G. Grätzer, General lattice theory, Birkh¨auser, Basel, Stuttgart (1978).
- [5] G. Grätzer, E. Knapp, Notes on planar semimodular lattices. I: Construction, Acta Sci. Math. 73, No. 3–4 (2007), pp. 445–462.
- [6] J. Jakubík, Modular lattice of locally finite length, Acta Sci. Math. 37 (1975), pp. 79–82.
- [7] M. Łazarz, K. Siemieńczuk, Modularity for upper continuous and strongly atomic lattices Algebra Universalis 76 (2016), pp. 493–95.
- [8] S. MacLane, A conjecture of Ore on chains in partially ordered sets, Bull. Am. Math. Soc. 49 (1943), pp. 567–568.
- [9] O. Ore, Chains in partially ordered sets, Bull. Am. Math. Soc. 49 (1943), pp. 558–566.
- [10] M. Ramalho, On upper continuous and semimodular lattices, Algebra Universalis 32 (1994), pp. 330–340.
- [11] M. Stern, Semimodular Lattices. Theory and Applications, Cambridge University Press (1999).
- [12] A. Walendziak, Podstawy algebry ogólnej i teorii krat, Wydawnictwo Naukowe PWN, Warszawa (2009).