Categorical Abstract Algebraic Logic: Pseudo-Referential Matrix System Semantics

George Voutsadakis

Bulletin of the Section of Logic (2018)

  • Volume: 47, Issue: 2
  • ISSN: 0138-0680

Abstract

top
This work adapts techniques and results first developed by Malinowski and by Marek in the context of referential semantics of sentential logics to the context of logics formalized as π-institutions. More precisely, the notion of a pseudoreferential matrix system is introduced and it is shown how this construct generalizes that of a referential matrix system. It is then shown that every π–institution has a pseudo-referential matrix system semantics. This contrasts with referential matrix system semantics which is only available for self-extensional π-institutions by a previous result of the author obtained as an extension of a classical result of Wójcicki. Finally, it is shown that it is possible to replace an arbitrary pseudoreferential matrix system semantics by a discrete pseudo-referential matrix system semantics.

How to cite

top

George Voutsadakis. "Categorical Abstract Algebraic Logic: Pseudo-Referential Matrix System Semantics." Bulletin of the Section of Logic 47.2 (2018): null. <http://eudml.org/doc/295594>.

@article{GeorgeVoutsadakis2018,
abstract = {This work adapts techniques and results first developed by Malinowski and by Marek in the context of referential semantics of sentential logics to the context of logics formalized as π-institutions. More precisely, the notion of a pseudoreferential matrix system is introduced and it is shown how this construct generalizes that of a referential matrix system. It is then shown that every π–institution has a pseudo-referential matrix system semantics. This contrasts with referential matrix system semantics which is only available for self-extensional π-institutions by a previous result of the author obtained as an extension of a classical result of Wójcicki. Finally, it is shown that it is possible to replace an arbitrary pseudoreferential matrix system semantics by a discrete pseudo-referential matrix system semantics.},
author = {George Voutsadakis},
journal = {Bulletin of the Section of Logic},
keywords = {Referential Logics; Selfextensional Logics; Referential Semantics; Referential π-institutions; Selfextensional π-institutions; Pseudo- Referential Semantics; Discrete Referential Semantics},
language = {eng},
number = {2},
pages = {null},
title = {Categorical Abstract Algebraic Logic: Pseudo-Referential Matrix System Semantics},
url = {http://eudml.org/doc/295594},
volume = {47},
year = {2018},
}

TY - JOUR
AU - George Voutsadakis
TI - Categorical Abstract Algebraic Logic: Pseudo-Referential Matrix System Semantics
JO - Bulletin of the Section of Logic
PY - 2018
VL - 47
IS - 2
SP - null
AB - This work adapts techniques and results first developed by Malinowski and by Marek in the context of referential semantics of sentential logics to the context of logics formalized as π-institutions. More precisely, the notion of a pseudoreferential matrix system is introduced and it is shown how this construct generalizes that of a referential matrix system. It is then shown that every π–institution has a pseudo-referential matrix system semantics. This contrasts with referential matrix system semantics which is only available for self-extensional π-institutions by a previous result of the author obtained as an extension of a classical result of Wójcicki. Finally, it is shown that it is possible to replace an arbitrary pseudoreferential matrix system semantics by a discrete pseudo-referential matrix system semantics.
LA - eng
KW - Referential Logics; Selfextensional Logics; Referential Semantics; Referential π-institutions; Selfextensional π-institutions; Pseudo- Referential Semantics; Discrete Referential Semantics
UR - http://eudml.org/doc/295594
ER -

References

top
  1. [1] W. J. Blok D. and Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society, Vol. 77, No. 396 (1989). 
  2. [2] J. Czelakowski, Reduced Products of Logical Matrices, Studia Logica, Vol. 39 (1980), pp. 19–43. 
  3. [3] J. Czelakowski, The Suszko Operator Part I, Studia Logica, Vol. 74, No. 1–2 (2003), pp. 181–231. 
  4. [4] J. Fiadeiro and A. Sernadas, Structuring Theories on Consequence, [in:] D. Sannella and A. Tarlecki, eds., Recent Trends in Data Type Specification, Lecture Notes in Computer Science, Vol. 332, Springer-Verlag, New York, 1988, pp. 44–72. 
  5. [5] J. M. Font and R. Jansana, A General Algebraic Semantics for Sentential Logics, Lecture Notes in Logic, Vol. 332, No. 7 (1996), Springer-Verlag, Berlin Heidelberg, 1996. 
  6. [6] J. A. Goguen and R. M. Burstall, Institutions: Abstract Model Theory for Specification and Programming, Journal of the Association for Computing Machinery, Vol. 39, No. 1 (1992), pp. 95–146. 
  7. [7] R. Jansana and A. Palmigiano, Referential Semantics: Duality and Applications, Reports on Mathematical Logic, Vol. 41 (2006), pp. 63–93. 
  8. [8] G. Malinowski, Pseudo-Referential Matrix Semantics for Propositional Logics, Bulletin of the Section of Logic, Vol. 12, No. 3 (1983), pp. 90–98. 
  9. [9] I. Marek, Remarks on Pseudo-Referential Matrices, Bulletin of the Section of Logic, Vol. 16, No. 2 (1987), pp. 89–92. 
  10. [10] R. Wójcicki, Referential Matrix Semantics for Propositional Calculi, Bulletin of the Section of Logic, Vol. 8, No. 4 (1979), pp. 170–176. 
  11. [11] G. Voutsadakis, Categorical Abstract Algebraic Logic: Referential Algebraic Semantics, Studia Logica, Vol. 101, No. 4 (2013), pp. 849–899. 
  12. [12] G. Voutsadakis, Categorical Abstract Algebraic Logic: Referential π-Institutions, Bulletin of the Section of Logic, Vol. 44, No. 1/2 (2015), pp. 33–51. 
  13. [13] G. Voutsadakis, Categorical Abstract Algebraic Logic: Tarski Congruence Systems, Logical Morphisms and Logical Quotients, Journal of Pure and Applied Mathematics: Advances and Applications, Vol. 13, No. 1 (2015), pp. 27–73. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.