Cantor on Infinitesimals. Historical and Modern Perspective
Bulletin of the Section of Logic (2020)
- Volume: 49, Issue: 2
- ISSN: 0138-0680
Access Full Article
topAbstract
topHow to cite
topPiotr Błaszczyk, and Marlena Fila. "Cantor on Infinitesimals. Historical and Modern Perspective." Bulletin of the Section of Logic 49.2 (2020): null. <http://eudml.org/doc/295595>.
@article{PiotrBłaszczyk2020,
abstract = {In his 1887's Mitteilungen zur Lehre von Transfiniten, Cantor seeks to prove inconsistency of infinitesimals. We provide a detailed analysis of his argument from both historical and mathematical perspective. We show that while his historical analysis are questionable, the mathematical part of the argument is false.},
author = {Piotr Błaszczyk, Marlena Fila},
journal = {Bulletin of the Section of Logic},
keywords = {infinitesimals; infinite numbers; real numbers; hyperreals; ordinal numbers; Conway numbers},
language = {eng},
number = {2},
pages = {null},
title = {Cantor on Infinitesimals. Historical and Modern Perspective},
url = {http://eudml.org/doc/295595},
volume = {49},
year = {2020},
}
TY - JOUR
AU - Piotr Błaszczyk
AU - Marlena Fila
TI - Cantor on Infinitesimals. Historical and Modern Perspective
JO - Bulletin of the Section of Logic
PY - 2020
VL - 49
IS - 2
SP - null
AB - In his 1887's Mitteilungen zur Lehre von Transfiniten, Cantor seeks to prove inconsistency of infinitesimals. We provide a detailed analysis of his argument from both historical and mathematical perspective. We show that while his historical analysis are questionable, the mathematical part of the argument is false.
LA - eng
KW - infinitesimals; infinite numbers; real numbers; hyperreals; ordinal numbers; Conway numbers
UR - http://eudml.org/doc/295595
ER -
References
top- [1] P. Błaszczyk, Nota o rozprawie Otto Höldera "Die Axiome der Quantität und die Lehre vom Mass", Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia, vol. 5 (2013), pp. 129–144.
- [2] P. Błaszczyk, A purely algebraic proof of the fundamental theorem of algebra. Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia, vol. 8 (2016), pp. 5–21.
- [3] P. Błaszczyk, J. Major, Calculus without the concept of limit. Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia, vol. 4, (2014) pp. 19–38.
- [4] P. Błaszczyk, K. Mrówka, Euklides i Arystoteles o ciągłości. Część I. Euklides. Filozofia Nauki, vol. 21 (2013), pp. 91–115.
- [5] B. Bolzano, Rein analytischer Beweis des Lehrsatzes, daß zwischen je zwei Werthen, die ein entgegengesetzes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung Liege, Gottlieb Hasse, Prague (1817).
- [6] B. Bolzano, Paradoxien des Undendlichen, Reclam, Leipzig (1851).
- [7] B. Bolzano, Theorie der reellen Zahlen in Bolzanos handschriftlichen Nachlasse, Hrsg. K. Rychlik, Tschechoslovakien Akademie der Wissenschaften, Prague (1962).
- [8] B. Bolzano, Reine Zahlenlehre, [in:] J. Berg (Hrsg.), Bernard Bolzano Gesamtausgabe, Bd. 2A8, Frommann-Holzboog, Stuttgart (1976).
- [9] K. Borsuk, W. Szmielew, Foundations of Geometry, NHPC, Amsterdam (1960).
- [10] N. Bourbaki, Théorie de la mesure et de l'intégration. Introduction, Université Henri Poincaré, Nancy (1947).
- [11] G. Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Springer, Berlin (1932).
- [12] G. Cantor, Über die einfachen Zahlensysteme, Zeitschrift für Mathematik und Physik, Neunzehnter Jahrgang, vol. 14 (1869), pp. 121–128, [in:] [11, pp. 35–42].
- [13] G. Cantor, Zwei Sätze über eine gewisse Zerlegung der Zahlen in unendliche Produkte, Zeitschrift für Mathematik und Physik, Neunzehnter Jahrgang, vol. 14 (1869), pp. 152–158, [in:] [11, pp. 43–50].
- [14] G. Cantor, Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen (1872), [in:] [11, pp. 92–102].
- [15] G. Cantor, Grundlagen einer allgemeinen Mannigfaltigkeitslehre (1883), [in:] [11, pp. 165–208].
- [16] G. Cantor, Mitteilungen zur Lehre von Transfiniten (1887), [in:] [11, pp. 378–439].
- [17] G. Cantor, Beiträge zur Begründung der transfiniten Mengenlehre (1895), [in:] [11, pp. 285–311].
- [18] G. Cantor, Beiträge zur Begründung der transfiniten Mengenlehre (1897), [in:] [11, pp. 312–351].
- [19] L. C. Cohen, G. Ehrlich, The Structure of the Real Number System, Van Nostrand, Toronto (1963).
- [20] J. H. Conway, On numbers and games, Academic Press, London (1976).
- [21] J. H. Conway, On Numbers and Games, AK Peters, Natick (2001).
- [22] J. W. Dauben, Georg Cantor. His Mathematics and Philosophy of Infinite, Princeton University Press, Princeton (1990).
- [23] R. Dedekind, Stetigkeit und irrationale Zahlen, Friedrich Vieweg & Sohn, Braunschweig (1872).
- [24] R. Descartes, La Géométrie, Leiden (1637).
- [25] P. Du Bois-Reymond, Die allgemeine Functiontheorie, Lauppschen, Tübingen (1882).
- [26] P. Du Bois-Reymond, Théorie Générale des Fonctions, Nice (1887).
- [27] P. Ehrlich, The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes, Archive for the History of Exact Science, vol. 60 (2006), pp. 1–121.
- [28] P. Ehrlich, The Absolute Arithmetic Continuum and the Unification of all Numbers Great and Small, Bulletin of Symbolic Logic, vol. 18(1) (2012), pp. 1–45.
- [29] L. Euler, Introductio in Analysin Infinitorum, Lausanae (1748).
- [30] L. Euler, Institutiones Calculi Differentialis, Saint Petersburg (1755).
- [31] W. Ewald, From Kant to Hilbert, vol. II, Clarendon Press, Oxford (1996).
- [32] H. Gonshor, An Introduction to the Theory of Surreal Numbers, Cambridge University Press, Cambridge (1986).
- [33] H. Grassmann, Lehrbuch der Arithmetik, Enslin, Berlin (1861).
- [34] R. Harshorne, Geometry: Euclid and Beyond, Spinger, New York (2000).
- [35] H. Hankel, Zur Geschichte der Mathematik in Altertum und Mittelalter, Teubner, Leipzig (1874).
- [36] T. L. Heath, The works of Archimedes, Dover, New York (1912).
- [37] J. L. Heiberg, Archimedis Opera Omnia cum Commentariis Eutocii, vol. I-II, Teubner, Leipzig (1880–1881).
- [38] J. L. Heiberg, Euclidis Elementa, Teubneri, Lipsiae (1883–1888).
- [39] G. Hessenberg, Grunbegriffe der Mengenlehre. Vandenhoeck und Ruprecht, Göttingen (1906).
- [40] D. Hilbert, Grundlagen der Geometrie. Festschrift zur Feier der Enthüllung des Gauss-Weber Denkmals in GÜttingen, Teubner, Leipzig (1899).
- [41] D. Hilbert, Über den Zahlbegriff, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 8 (1900), pp. 180–184.
- [42] D. Hilbert, S. Cohn-Vossen, Anschauliche Geometrie, Springer, Berlin (1932).
- [43] O. Hölder, Die Axiome der Quantität und die Lehre vom Mass, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Classe, vol. 53 (1901), pp. 1–63.
- [44] O. Hölder, The Axioms of Quantity and the Theory of Measurement, Translated by J. Mitchell, Journal of Mathematical Psychology, vol. 40 (1996), pp. 235–252.
- [45] H. Meschkowski, W. Nilson Hrsg., Georg Cantor – Briefe, Springer, Berlin (1991).
- [46] K. Shamseddine, M. Berz, Analysis on the Levi-Civita field, a brief overview, [in:] Contemporary Mathematics 508, American Mathematical Society (2010), pp. 215–237.
- [47] O. Stolz, Vorlesungen über Allgemeine Arithmetik, Teubner, Leipzig (1885).
- [48] O. Stolz, J. A. Gmeiner, Theoretische Arithmetik, Teubner, Leipzig (1902).
- [49] H. Weber, Lehrbuch der Algebra, Vieweg, Braunschweig (1895).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.