Sur la semi—continuité inférieure

António J. Brandão Lopes-Pinto

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1972)

  • Volume: 53, Issue: 1-2, page 46-49
  • ISSN: 0392-7881

How to cite

top

Lopes-Pinto, António J. Brandão. "Sur la semi—continuité inférieure." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 53.1-2 (1972): 46-49. <http://eudml.org/doc/295738>.

@article{Lopes1972,
author = {Lopes-Pinto, António J. Brandão},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {fre},
month = {7},
number = {1-2},
pages = {46-49},
publisher = {Accademia Nazionale dei Lincei},
title = {Sur la semi—continuité inférieure},
url = {http://eudml.org/doc/295738},
volume = {53},
year = {1972},
}

TY - JOUR
AU - Lopes-Pinto, António J. Brandão
TI - Sur la semi—continuité inférieure
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1972/7//
PB - Accademia Nazionale dei Lincei
VL - 53
IS - 1-2
SP - 46
EP - 49
LA - fre
UR - http://eudml.org/doc/295738
ER -

References

top
  1. BOSANQUET, L. S. and KESTELMAN, H., The absolute convergence of a series of integrals, «Proc. London Math. Soc.», (2) 43, 88-97 (1939). Zbl65.0262.02MR1576814DOI10.1112/plms/s2-45.1.88
  2. BRANDÃO LOPES PINTO, A. J., Catégorie et semi-continuité inférieure. Istituto matematico «Ulisse Dini», Università degli Studi di Firenze, 1972/18. 
  3. BRANDÃO LOPES PINTO, A. J., Functions with values in an ordered topological linear space. A closed-graph theorem for convex functions, «Boll. Un. Mat. It.», (4) 5, 255-261 Zbl0244.46008MR312206
  4. BRANDÃO LOPES PINTO, A. J., Minimi totali in spazi preordinati. I. Esistenza. Istituto Matematico «Ulisse Dini», Università degli Studi di Firenze, 1972/3. 
  5. BRANDÃO LOPES PINTO, A. J., Banach extension theorem for ordered-complete linear spaces (à paraître en BUMI). Zbl0259.46003
  6. BRØNDSTED, A., Conjugate convex functions in topological vector spaces, «Mat. Fys. Medd. Dan. Vid. Selsk.», 34, 2 (1964). Zbl0119.10004
  7. BR0NDSTED, A. and ROCKAFELLAR, R. T., On the subdifferentiability of convexfunctions, «Proc. Amer. Math. Soc.», 16, 605-611 (1965). MR178103DOI10.2307/2033889
  8. EBERLEIN, W. F., Closure, convexity and linearity in Banach spaces, «Annals of Math.», 47, 688-703 (1946). Zbl0063.01207MR18354DOI10.2307/1969229
  9. GELFAND, I., Sur un lemme de la théorie des espaces linéaires, «Comm. Soc. Math.», Karkow, 13, 35-40 (1936)- Zbl62.1235.01
  10. GELFAND, I., Abstrakte Funktionen und lineare Operatoren. «Mat. Sb.», 4, 235-284 (1938). Zbl0020.36701
  11. KÖTHE, G., Topologische lineare Räume, I. Springer-Verlag, Berlin (1960). Zbl0093.11901MR130551
  12. MEDHI, M. R., Continuity of semi-norms on topological vector spaces, «Studia Math.», 17, 81-86 (1959). MR104136DOI10.4064/sm-18-1-81-86
  13. MOREAU, J.-J., Proximité et dualité dans un espace hilbertien, «Bull. Soc. Math. France», 93, 273-299 (1965). Zbl0136.12101MR201952
  14. ORLICZ, W., Beiträge zur Theorie der Orthogonalentwicklungen, «Studia Math.», 1, 1-39 (1928). Zbl55.0164.02
  15. OXTOBY, J. C., Category and measure, «Lect. Notes in Math.», Springer-Verlag, Berlin (1971). 
  16. ROCKAFELLAR, R. T., Convex functions, monotone operators and variational inequalities. Theory and applications of monotone operators, Edizioni «Oderisi» (1969). MR261415
  17. BOURBAKI, N., Espaces vectoriels topologiques. Herman-Paris (1960). Zbl0042.35302
  18. HÖRMANDER, L., Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, «Ark. Mat.», 3 (12), 181-186 (1955). Zbl0064.10504MR68112DOI10.1007/BF02589354

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.