On Geometries associated with Multiple Integrals

Evan T. Davies

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1972)

  • Volume: 53, Issue: 5, page 389-394
  • ISSN: 0392-7881

How to cite

top

Davies, Evan T.. "On Geometries associated with Multiple Integrals." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 53.5 (1972): 389-394. <http://eudml.org/doc/295774>.

@article{Davies1972,
author = {Davies, Evan T.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {11},
number = {5},
pages = {389-394},
publisher = {Accademia Nazionale dei Lincei},
title = {On Geometries associated with Multiple Integrals},
url = {http://eudml.org/doc/295774},
volume = {53},
year = {1972},
}

TY - JOUR
AU - Davies, Evan T.
TI - On Geometries associated with Multiple Integrals
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1972/11//
PB - Accademia Nazionale dei Lincei
VL - 53
IS - 5
SP - 389
EP - 394
LA - eng
UR - http://eudml.org/doc/295774
ER -

References

top
  1. DAVIES, E. T., A Geometrical Theory of Multiple Integral problems in the Calculus of Variations, «Aequationes mathematicae», 7, 173-181 (1972). MR305289DOI10.1007/BF01818511
  2. DAVIES, E. T., On a fibred space associated with a multiple integral, Differential Geometry, in honor of K. Yano, 95-109 (1972). MR324576
  3. IWAMOTO, H., On Geometries associated with Multiple Integrals, «Math. Japonicae», 174-91 (1948). Zbl0041.30303MR28662
  4. KAWAGUCHI, A. and TANDAI, K., On Areal Spaces V, «Tensor (N. S.)», 2, 47-58 (1952). MR52190
  5. RUND, H., The Hamilton-Jacobi Theory in the Calculus of Variations (van Nostrand, London and New York, 1966). Zbl0141.10602MR230189
  6. RUND, H., A Geometrical Theory of Multiple Integral problems in the Calculus of Variations, «Canad. J. Math.», 20, 639-657 (1968). Zbl0155.44301MR238243DOI10.4153/CJM-1968-062-1
  7. SU BUCHIN, , On the Theory of Affine Connections in an Areal Space, «Bull. Math. Soc. Sci. Math. Phys. R. P., Roumaines (N. S.)», 2 (50), 185-190 (1958). Zbl0090.12604MR115150

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.