Su un Teorema di Nevanlinna

Gianna Stefani

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1972)

  • Volume: 52, Issue: 3, page 271-276
  • ISSN: 0392-7881

Abstract

top
A number of results are given, extending - in the form of Carlson and Griffiths - an extension of R. Nevanlinna of a classical Picard Theorem.

How to cite

top

Stefani, Gianna. "Su un Teorema di Nevanlinna." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 52.3 (1972): 271-276. <http://eudml.org/doc/295938>.

@article{Stefani1972,
author = {Stefani, Gianna},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {ita},
month = {3},
number = {3},
pages = {271-276},
publisher = {Accademia Nazionale dei Lincei},
title = {Su un Teorema di Nevanlinna},
url = {http://eudml.org/doc/295938},
volume = {52},
year = {1972},
}

TY - JOUR
AU - Stefani, Gianna
TI - Su un Teorema di Nevanlinna
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1972/3//
PB - Accademia Nazionale dei Lincei
VL - 52
IS - 3
SP - 271
EP - 276
LA - ita
UR - http://eudml.org/doc/295938
ER -

References

top
  1. NEVANLINNA, R., Théorème de Pìcard-Borel e la Theorie des fonctions Meromorphes, Paris, Gautier-Villars1929. Zbl55.0773.03MR417418
  2. CARLSON, J. e GRIFFITHS, P., A defect relation for equidimensional holomorphic mappings between algebraic varieties (di prossima pubblicazione). Zbl0248.32018
  3. CARLSON, J., Some degeneracy theorems for entire functions with values in algebraic variety, Thesis at Princeton, April 1971. MR2621218
  4. GREEN, M., Holomorphic maps into 𝐏 n omitting hyperplanes (Di prossima pubblicazione). 
  5. GRIFFITHS, P., Holomorphic mappings into canonical algebraic varieties, «Annals of Mathematics», 93 (1971). Zbl0214.48601MR281954DOI10.2307/1970883
  6. STOLL, W., Value distribution of holomorphic maps into compact complex manifolds, «Lecture notes in Mathematics», 135, Springer (New York1970). Zbl0195.36702MR267138

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.