Unimodular numerical contractions in Hilbert space
- Volume: 53, Issue: 5, page 380-383
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topReferences
top- BERBERIAN, S. K., The Weyl spectrum of an operator, «Indiana Univ. Math. J.», 20, 529-544 (1970). Zbl0203.13401MR279623DOI10.1512/iumj.1970.20.20044
- GILFEATHER, F., The structure and asymptotic behavior of polynomially compact operators, «Proc. Amer. Math. Soc.», 25, 127-134 (1970). Zbl0191.41801MR257791DOI10.2307/2036540
- GINDLER, H. A. and TAYLOR, A., The minimum modulus of a linear operator and its use in spectral theory, «Studia Math.», 22, 15-41 (1962). Zbl0109.08702MR151850DOI10.4064/sm-22-1-15-41
- HILDEBRANDT, S., Über den numerischen Wertebereich eines Operators, «Math. Ann.», 163, 230-247 (1966). Zbl0138.39101MR200725DOI10.1007/BF02052287
- HOLBROOK, J., Multiplicative properties of the numerical radius iu operator theory, «J. Reine Angew. Math.», 237, 166-174 (1969). Zbl0176.43502MR247515DOI10.1515/crll.1969.237.166
- KITANO, K., Invariant subspaces for some non selfadjoint operators, «Tôhoku Math. J.», 20, 313-320 (1968). Zbl0175.13504MR240655DOI10.2748/tmj/1178243138
- RUSSO, B., Unimodular contractions in Hilbert space, «Pacific J. Math.», 26, 163-171 (1968). Zbl0159.43202MR231214
- NAGY, SZ. and FOIAȘ, C., Analyse harmonique des opérateurs de l'espace de Hilbert, MassonParis et Akadémiai Kiadó Budapest1967. Zbl0157.43201MR225183