Hahn polynomials

Arun Verma

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1971)

  • Volume: 51, Issue: 3-4, page 168-176
  • ISSN: 0392-7881

How to cite

top

Verma, Arun. "Hahn polynomials." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 51.3-4 (1971): 168-176. <http://eudml.org/doc/295972>.

@article{Verma1971,
author = {Verma, Arun},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {9},
number = {3-4},
pages = {168-176},
publisher = {Accademia Nazionale dei Lincei},
title = {Hahn polynomials},
url = {http://eudml.org/doc/295972},
volume = {51},
year = {1971},
}

TY - JOUR
AU - Verma, Arun
TI - Hahn polynomials
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1971/9//
PB - Accademia Nazionale dei Lincei
VL - 51
IS - 3-4
SP - 168
EP - 176
LA - eng
UR - http://eudml.org/doc/295972
ER -

References

top
  1. AL-SALAM, N. A., Orthogonal polynomials of hypergeometric type. «Duke Math. Jour.», 33, 109-122 (1966). Zbl0141.07201MR188511
  2. AL-SALAM, N. A., A class of hypergeometric polynomials. «Annali Mat. Pura Appl.», 75, 95-120 (1967). Zbl0146.09202MR217345DOI10.1007/BF02416800
  3. AL-SALAM, N. A., Some relations involving Jacobi polynomials. «Portugaliae Math.», 15, 73-77 (1956). Zbl0074.29503MR84594
  4. BATEMAN, H., Some properties of a certain set of polynomials. «Tohoku Math. Jour.», 37, 23-28 (1933). Zbl59.0364.02
  5. BATEMAN, H., The polynomials F n ( x ) . «Annales of Math.», 35, 767-775 (1944). Zbl60.0301.02MR1503195DOI10.2307/1968493
  6. ERDÉLYI, A. et al., Higher trancendental functions. Vol. II. McGraw Hill (1955). 
  7. HAHN, W., Uber orthogonal Polynome, die q-Differenzengecic-hungen genugen. «Math. Nacher.», 2, 4-34 (1949). MR30647DOI10.1002/mana.19490020103
  8. GOULD, H. W., A new series transform with applications to Bessel, Legendre, Tchebycheff polynomials. «Duke Math. Jour.», 31, 325-334 (1964). Zbl0137.04003MR161063
  9. RAINVILLE, E. D., Special functions. MacMillan Co., New York1960. Zbl0092.06503MR107725
  10. RICE, S. O., Some properties of F 2 3 ( - n , - n - 1 , 1 ; p , v ) . «Duke Math. Jour.», 6, 108-119 (1940). Zbl0026.31401MR1412
  11. VERMA, A., A class of expansions of G-functions and the Laplace transform. «Math. Comp.», 19, 664-666 (1965). Zbl0133.32401
  12. WEBER, M. and ERDÉLYI, A., On the finite difference analogue of Rodrigue's formula, «Amer. Math. Monthly», 59, 163-168 (1952). Zbl0046.29902MR54094DOI10.2307/2308188

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.