Maximal monotonicity and m-accretivity of A + B

Bruce Calvert

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1970)

  • Volume: 49, Issue: 6, page 357-363
  • ISSN: 0392-7881

How to cite

top

Calvert, Bruce. "Maximal monotonicity and m-accretivity of A + B." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 49.6 (1970): 357-363. <http://eudml.org/doc/296027>.

@article{Calvert1970,
author = {Calvert, Bruce},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {12},
number = {6},
pages = {357-363},
publisher = {Accademia Nazionale dei Lincei},
title = {Maximal monotonicity and m-accretivity of A + B},
url = {http://eudml.org/doc/296027},
volume = {49},
year = {1970},
}

TY - JOUR
AU - Calvert, Bruce
TI - Maximal monotonicity and m-accretivity of A + B
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1970/12//
PB - Accademia Nazionale dei Lincei
VL - 49
IS - 6
SP - 357
EP - 363
LA - eng
UR - http://eudml.org/doc/296027
ER -

References

top
  1. ASPLUND, E., Averaged norms, «Israel J. Math.», 5, 227-233 (1967). Zbl0153.44301MR222610DOI10.1007/BF02771611
  2. BISHOP, E. and PHELPS, R., The support functionals of a convex set, «Proc. Symp. Pure Math.», VII, 27-35, «Amer. Math. Soc.», Providence R. I. (1963). Zbl0149.08601MR154092
  3. BREZIS, H., CRANDALL, M. and PAZY, A., Perturbations of nonlinear monotone sets in Banach spaces, «Comm. Pure App. Math.», 23, 123-144 (1970). Zbl0182.47501MR257805DOI10.1002/cpa.3160230107
  4. BREZIS, H., Propriétés régularisantes de certains semigroupes nonlinéaires (to appear). Zbl0229.35052
  5. BROWDER, F., Nonlinear maximal monotone operators in Banach spaces, «Math. Ann.», 175, 89-113 (1968). Zbl0159.43901MR223942DOI10.1007/BF01418765
  6. BROWDER, F., Nonlinear variational inequalities and maximal monotone mappings in Banach spaces, «Math. Ann.», 183, 213-231 (1969). Zbl0208.39105MR271780DOI10.1007/BF01351381
  7. BROWDER, F., Nonlinear operators and nonlinear equations of evolution in Banach spaces, «Proc. Symp. Pure Math.» 18, part II, «Amer. Math. Soc.», Providence R.I. (to appear). MR405188
  8. BROWDER, F., IV CIME Session, Varenna, August 1970. 
  9. CALVERT, B., Nonlinear equations of evolution, «Pac. J. Math.» (To appear). Zbl0207.45603MR318985
  10. CALVERT, B. and GUSTAFSON, K., Multiplicative perturbation of nonlinear m-accretive operators (to appear). Zbl0236.47048MR341200DOI10.1016/0022-1236(72)90046-8
  11. KATO, T., Accretive operators and nonlinear evolution equations in Banach spaces, «Symp. Nonlinear Funct. Anal.», A.M.S., Chicago1968. MR271782
  12. MERMIN, J., Thesis, University of California, Berkeley1968. 
  13. ROCKEFELLER, R. T., On the maximality of sums of nonlinear monotone operators, «Trans. Amer. Math. Soc.» (to appear). MR282272DOI10.2307/1995660
  14. ROCKEFELLER, R. T., Convex functions, monotone operators and variational inequalities, Theory and Applications of Monotone operators, NATO conference (1968). MR261415

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.