High School Identities
Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia (2015)
- Volume: 7, page 91-98
- ISSN: 2080-9751
Access Full Article
topAbstract
topHow to cite
topReferences
top- Asatryan, G. R.: 2004, A solution to identities problem in 2-element HSI-algebras, Math. Log. Quart. 50, 175-178.
- Baldwin, J. T.: 2010, Logic across the high school curriculum, preprint, University of Illinois at Chicago. http://homepages.math.uic.edu/~jbaldwin/pub/logicaug20.
- pdf [dostep: 2016-01-29].
- Birkhoff, G.: 1942, Generalized arithmetic, Duke Math. J. 9, 283-302.
- Burris, S., Lee, S.: 1993, Tarski’s High School Identities, Amer. Math. Monthly 100, 231-236.
- Burris, S., Yeats, K. A.: 2004, The saga of the High School Identities, Algebra Universalis 52, 325-342.
- Dedekind, R.: 1888, Was sind und was sollen die Zahlen?, Verlag Friedrich Vieweg & Sohn, Braunschweig. [tłum. ang.: 1995, What are numbers and what should they be?
- Revised, edited, and translated from the German by H. Pogorzelski, W. Ryan and W. Snyder. RIM Monographs in Mathematics. Research Institute for Mathematics, Orono, ME].
- Doner, J., Tarski, A.: 1969, An extended arithmetic of ordinal numbers, Fund. Math. 65, 95-127.
- Dyer-Bennet, J.: 1940, A theorem on partitions of the set of positive integers, Amer. Math. Monthly 47, 152-154.
- Gurevic, R.: 1985, Equational theory of positive numbers with exponentiation, Proc. Amer. Math. Soc. 94, 135-141.
- Gurevic, R.: 1990, Equational theory of positive numbers with exponentiation is not finitely axiomatizable, Ann. Pure Appl. Logic 49, 1-30.
- Hardy, G. H.: 1910, Orders of Infinity. The ‘Infinitärcalcül’ of Paul Du Bois-Reymond, Cambridge University Press, Cambridge.
- Henkin, L.: 1977, The logic of equality, Amer. Math. Monthly 84, 597-612.
- Macintyre, A.: 1981, The laws of exponentiation, w: C. Berline, K. McAloon, J.-P. Ressayre (red.), Model Theory and Arithmetic, Lecture Notes in Math. 890, Springer,
- Berlin, 185-197.
- Martin, C. F.: 1973, Equational Theories of Natural Numbers and Transfinite Ordinals, Ph.D. Thesis, University of California, Berkeley, CA.
- Wilkie, A. J.: 1981, On exponentiation - a solution to Tarski’s high school algebra problem, preprint, Oxford University, 2000, w: A. Macintyre (red.), Connections between Model Theory and Algebraic and Analytic Geometry, Quaderni di Matematica 6, Naples, 107-129. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
- 1.15.9695&rep=rep1&type=pdf [dostep: 2016-01-29].
- Zhang, J.: 2005, Computer search for counterexamples to Wilkie’s Identity, w: R. Nieuwenhuis (red.), Automated Deduction – CADE-20, Lecture Notes in Computer Science 3632, Springer, Berlin, 441-451.