How abelian can a non-abelian group be?

Katarzyna Słomczyńska

Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia (2017)

  • Volume: 9, page 99-110
  • ISSN: 2080-9751

Abstract

top
In this paper we survey, also in historical perspective, the results connected with the notion of the commutativity degree of a finite group, i.e., the probability that two randomly selected elements of the group commute.

How to cite

top

Katarzyna Słomczyńska. "Jak bardzo przemienna może być grupa nieprzemienna?." Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 9 (2017): 99-110. <http://eudml.org/doc/296282>.

@article{KatarzynaSłomczyńska2017,
author = {Katarzyna Słomczyńska},
journal = {Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia},
keywords = {group; commutativity degree; conjugacy class; degree equation},
language = {pol},
pages = {99-110},
title = {Jak bardzo przemienna może być grupa nieprzemienna?},
url = {http://eudml.org/doc/296282},
volume = {9},
year = {2017},
}

TY - JOUR
AU - Katarzyna Słomczyńska
TI - Jak bardzo przemienna może być grupa nieprzemienna?
JO - Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia
PY - 2017
VL - 9
SP - 99
EP - 110
LA - pol
KW - group; commutativity degree; conjugacy class; degree equation
UR - http://eudml.org/doc/296282
ER -

References

top
  1. Antolín, Y., Martino, A., Ventura, E.: 2017, Degree of commutativity of infinite groups, Proc. Amer. Math. Soc. 145, 479–485. 
  2. Barry, F., MacHale, D., Ní Shé, Á.: 2006, Some supersolvability conditions for finite groups, Math. Proc. R. Ir. Acad. 106A, 163–177. 
  3. Baumeister, B., Maróti, A., Tong-Viet, H. P.: 2016, Finite groups have more conjugacy classes, Forum Math. 29, 259–275. 
  4. Bertram, E. A.: 2013, New reductions and logarithmic lower bounds for the number of conjugacy classes in finite groups, Bull. Austral. Math. Soc. 87, 406–424. 
  5. Buckley, S. M., MacHale, D.: 2017, Contrasting the commuting probabilities of groups and rings, preprint, http://archive.maths.nuim.ie/staff/sbuckley/Papers/bm_g-vs-r.pdf. 
  6. Castelaz, A.: 2010, Commutativity degree of finite groups, Master’s thesis, Wake Forest University. 
  7. Das, A. K., Nath, R. K., Pournaki, M. R.: 2013, A survey on the estimation of commutativity in finite groups, Southeast Asian Bull. Math. 37, 161–180. 
  8. Dixon, J. D.: 2002, Probabilistic group theory, C. R. Math. Acad. Sci. Soc. R. Can. 24, 1–15. 
  9. Eberhard, S.: 2015, Commuting probabilities of finite groups, Bull. London Math. Soc. 47, 796–808. 
  10. Erdös, P., Turán, P.: 1968, On some problems of a statistical group-theory, iv, Acta Math. Acad. Sci. Hung. 19, 413–435. 
  11. Gallagher, P. X.: 1970, The number of conjugacy classes in a finite group, Math. Z. 118, 175–179. 
  12. Gallian, J. A.: 2013, Contemporary Abstract Algebra, 8th ed., Belmont, CA, Cengage Learning. 
  13. Guralnick, R. M., Robinson, G. R.: 2006, On the commuting probability in finite groups, J. Algebra 300, 509–528. 
  14. Gustafson, W. H.: 1973, What is the probability that two group elements commute?, Amer. Math. Monthly 80, 1031–1034. 
  15. Hegarty, P.: 2013, Limit points in the range of the commuting probability function on finite groups, J. Group Theory 16, 235–247. 
  16. Joseph, K. S.: 1969, Commutativity in non-abelian groups, PhD thesis, UCLA. 
  17. Joseph, K. S.: 1977, Several conjectures on commutativity in algebraic structures, Amer. Math. Monthly 84, 550–551. 
  18. Landau, E.: 1903, Über die Klassenzahl binären quadratischen Formen von negativer Discriminante, Math. Ann. 56, 671–676. 
  19. Leavitt, J. L., Sherman, G. J., Walker, M. E.: 1992, Rewriteability in finite groups, Amer. Math. Monthly 99, 446–452. 
  20. Lescot, P.: 1978, Sur certains groupes finis, Rev. Math. Spéciales, Avril 1987, 276–277. 
  21. Lescot, P.: 1988, Degré de commutativité et structure d’un groupe fini (1), Rev. Math. Spéciales, Avril 1988, 276–279. 
  22. MacHale, D.: 1974, How commutative can a non-commutative group be?, Math. Gazette 58, 199–202. 
  23. MacHale, D.: 1976, Commutativity in finite rings, Amer. Math. Monthly 83, 30–32. 
  24. MacHale, D.: 1990, Probability in finite semigroups, Irish Math. Soc. Bull. 25, 64–68. 
  25. Miller, G. A.: 1919, Groups possessing a small number of sets of conjugate operators, Trans. Amer. Math. Soc. 20, 260–270. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.