How abelian can a non-abelian group be?
Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia (2017)
- Volume: 9, page 99-110
- ISSN: 2080-9751
Access Full Article
topAbstract
topHow to cite
topKatarzyna Słomczyńska. "Jak bardzo przemienna może być grupa nieprzemienna?." Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 9 (2017): 99-110. <http://eudml.org/doc/296282>.
@article{KatarzynaSłomczyńska2017,
author = {Katarzyna Słomczyńska},
journal = {Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia},
keywords = {group; commutativity degree; conjugacy class; degree equation},
language = {pol},
pages = {99-110},
title = {Jak bardzo przemienna może być grupa nieprzemienna?},
url = {http://eudml.org/doc/296282},
volume = {9},
year = {2017},
}
TY - JOUR
AU - Katarzyna Słomczyńska
TI - Jak bardzo przemienna może być grupa nieprzemienna?
JO - Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia
PY - 2017
VL - 9
SP - 99
EP - 110
LA - pol
KW - group; commutativity degree; conjugacy class; degree equation
UR - http://eudml.org/doc/296282
ER -
References
top- Antolín, Y., Martino, A., Ventura, E.: 2017, Degree of commutativity of infinite groups, Proc. Amer. Math. Soc. 145, 479–485.
- Barry, F., MacHale, D., Ní Shé, Á.: 2006, Some supersolvability conditions for finite groups, Math. Proc. R. Ir. Acad. 106A, 163–177.
- Baumeister, B., Maróti, A., Tong-Viet, H. P.: 2016, Finite groups have more conjugacy classes, Forum Math. 29, 259–275.
- Bertram, E. A.: 2013, New reductions and logarithmic lower bounds for the number of conjugacy classes in finite groups, Bull. Austral. Math. Soc. 87, 406–424.
- Buckley, S. M., MacHale, D.: 2017, Contrasting the commuting probabilities of groups and rings, preprint, http://archive.maths.nuim.ie/staff/sbuckley/Papers/bm_g-vs-r.pdf.
- Castelaz, A.: 2010, Commutativity degree of finite groups, Master’s thesis, Wake Forest University.
- Das, A. K., Nath, R. K., Pournaki, M. R.: 2013, A survey on the estimation of commutativity in finite groups, Southeast Asian Bull. Math. 37, 161–180.
- Dixon, J. D.: 2002, Probabilistic group theory, C. R. Math. Acad. Sci. Soc. R. Can. 24, 1–15.
- Eberhard, S.: 2015, Commuting probabilities of finite groups, Bull. London Math. Soc. 47, 796–808.
- Erdös, P., Turán, P.: 1968, On some problems of a statistical group-theory, iv, Acta Math. Acad. Sci. Hung. 19, 413–435.
- Gallagher, P. X.: 1970, The number of conjugacy classes in a finite group, Math. Z. 118, 175–179.
- Gallian, J. A.: 2013, Contemporary Abstract Algebra, 8th ed., Belmont, CA, Cengage Learning.
- Guralnick, R. M., Robinson, G. R.: 2006, On the commuting probability in finite groups, J. Algebra 300, 509–528.
- Gustafson, W. H.: 1973, What is the probability that two group elements commute?, Amer. Math. Monthly 80, 1031–1034.
- Hegarty, P.: 2013, Limit points in the range of the commuting probability function on finite groups, J. Group Theory 16, 235–247.
- Joseph, K. S.: 1969, Commutativity in non-abelian groups, PhD thesis, UCLA.
- Joseph, K. S.: 1977, Several conjectures on commutativity in algebraic structures, Amer. Math. Monthly 84, 550–551.
- Landau, E.: 1903, Über die Klassenzahl binären quadratischen Formen von negativer Discriminante, Math. Ann. 56, 671–676.
- Leavitt, J. L., Sherman, G. J., Walker, M. E.: 1992, Rewriteability in finite groups, Amer. Math. Monthly 99, 446–452.
- Lescot, P.: 1978, Sur certains groupes finis, Rev. Math. Spéciales, Avril 1987, 276–277.
- Lescot, P.: 1988, Degré de commutativité et structure d’un groupe fini (1), Rev. Math. Spéciales, Avril 1988, 276–279.
- MacHale, D.: 1974, How commutative can a non-commutative group be?, Math. Gazette 58, 199–202.
- MacHale, D.: 1976, Commutativity in finite rings, Amer. Math. Monthly 83, 30–32.
- MacHale, D.: 1990, Probability in finite semigroups, Irish Math. Soc. Bull. 25, 64–68.
- Miller, G. A.: 1919, Groups possessing a small number of sets of conjugate operators, Trans. Amer. Math. Soc. 20, 260–270.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.