Leonardo Pisano called Fibonacci, between advanced mathematics, history of mathematics and mathematics education: three examples drawn from Liber Quadratorum
Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia (2015)
- Volume: 7, page 5-25
- ISSN: 2080-9751
Access Full Article
topAbstract
topHow to cite
topPaolo Bussotti. "Leonardo Pisano called Fibonacci, between advanced mathematics, history of mathematics and mathematics education: three examples drawn from Liber Quadratorum." Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 7 (2015): 5-25. <http://eudml.org/doc/296365>.
@article{PaoloBussotti2015,
abstract = {In this research, three problems faced by Leonardo Pisano, called Fibonacci,are dealt with. The main purpose is to show that history of mathematics can offerinteresting material for mathematics education. The approach to the use of history ofmathematics in mathematics education cannot be merely historical, but adapted to theneeds of the explanations in a classroom. In the course of this paper, the meaning ofsuch assertion will be clarified. A further purpose is a trying to explore the relationshistory of mathematics-mathematics education-advanced mathematics. Last, but notthe least, a further aim is to offer a specific series of interesting material to the teacherin order to develop stimulating lessons. The material here expounded is conceived forpupils frequenting the third and the fourth years of the high school, but, with minormodifications, it can be adapted to the fifth year of the high school and to the initialyears of the scientific faculties at the university.},
author = {Paolo Bussotti},
journal = {Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia},
keywords = {Fibonacci; Enriques; Liber Quadratorum; Relation history of mathematics-mathematics education; paradigmatic examples; Medieval mathematics; number theory and mathematics education; Diophantine analysis; Lagrange; Genochhi},
language = {pol},
pages = {5-25},
title = {Leonardo Pisano called Fibonacci, between advanced mathematics, history of mathematics and mathematics education: three examples drawn from Liber Quadratorum},
url = {http://eudml.org/doc/296365},
volume = {7},
year = {2015},
}
TY - JOUR
AU - Paolo Bussotti
TI - Leonardo Pisano called Fibonacci, between advanced mathematics, history of mathematics and mathematics education: three examples drawn from Liber Quadratorum
JO - Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia
PY - 2015
VL - 7
SP - 5
EP - 25
AB - In this research, three problems faced by Leonardo Pisano, called Fibonacci,are dealt with. The main purpose is to show that history of mathematics can offerinteresting material for mathematics education. The approach to the use of history ofmathematics in mathematics education cannot be merely historical, but adapted to theneeds of the explanations in a classroom. In the course of this paper, the meaning ofsuch assertion will be clarified. A further purpose is a trying to explore the relationshistory of mathematics-mathematics education-advanced mathematics. Last, but notthe least, a further aim is to offer a specific series of interesting material to the teacherin order to develop stimulating lessons. The material here expounded is conceived forpupils frequenting the third and the fourth years of the high school, but, with minormodifications, it can be adapted to the fifth year of the high school and to the initialyears of the scientific faculties at the university.
LA - pol
KW - Fibonacci; Enriques; Liber Quadratorum; Relation history of mathematics-mathematics education; paradigmatic examples; Medieval mathematics; number theory and mathematics education; Diophantine analysis; Lagrange; Genochhi
UR - http://eudml.org/doc/296365
ER -
References
top- Boncompagni, B.: 1852, Della vita e delle opere di Leonardo Pisano, matematico del secolo decimoterzo, Tipografia delle Belle Arti, Roma.
- Boncompagni, B.: 1854, Intorno ad alcune opere di Leonardo Pisano matematico del secolo decimoterzo, Tipografia delle Belle Arti, Roma.
- Bussotti, P.: 2004, Il Triangulus Arithmeticus di Pascal, Nuova Secondaria 2, 75-81.
- Bussotti, P.: 2006, From Fermat to Gauss: indefinite descent and methods of reduction in number theory, Rauner Verlag, Augsburg.
- Bussotti, P.: 2008a, Fibonacci und sein Liber Quadratorum. In Kaiser Friedrich II. (1194-1250). Welt und Kultur des, Philip von Zabern, Mainz am Rheim.
- Bussotti, P.: 2008b, Problems and methods at the origin of the theory of numbers, Accademia Pontaniana, Napoli.
- Bussotti, P.: 2014, The possible relations between history of mathematics and mathematics education, in Science and Technology Education for the 21st Century. Research
- and Research Oriented Studies. Proceedings of the 9th IOSTE Symposium for Central and Eastern Europe, Hradek Králové, Gaudeamus 29-41.
- Bussotti, P.: 2015, Differential calculus: the use of Newton’s Methodus Fuxionum et Serierum infinitarum in an education context, Problems of Education in the 21th
- Century 69, 39-65.
- Enriques, F.: 1921, 2003, Insegnamento dinamico, con scritti di Franco Ghione e Mauro Moretti, La Spezia, Agorà.
- Favaro, A.: 1874, Notizie storiche sulle frazioni continue dal secolo decimoterzo al decimosettimo, Bullettino di bibliografia e di storia delle scienze matematiche e fisiche VII, 451-589.
- Fibonacci: 1952, Le Livre de nombres carres, edited by Paul ver Eecke, Blanchard, Paris.(as Leonarde de Pise).
- Fibonacci: 1988, The Book of Squares, translation into English of Fibonacci’s Liber Quadratorum by L.E. Sigler, The Fibonacci Quarterly 26(4).
- Fibonacci, L.: 1228, 1857, Liber Abbaci, Scritti di Leonardo Pisano matematico del secolo decimoterzo pubblicato da Baldassarre Boncompagni. Volume I, Tipografia delle Scienze matematiche e fisiche, Roma.
- Fibonacci, L.: 1862a, Flos, Scritti di Leonardo Pisano matematico del secolo decimoterzo pubblicato da Baldassarre Boncompagni. Volume II (Practica Geometriae ed opuscoli), Tipografia delle Scienze matematiche e fisiche, Roma, 227-252.
- Fibonacci, L.: 1862b, Liber Quadratorum, Scritti di Leonardo Pisano matematico del secolo decimoterzo pubblicato da Baldassarre Boncompagni. Volume II (Practica Geometriae ed opuscoli), Tipografia delle Scienze matematiche e fisiche, Roma, 253-283.
- Fibonacci, L.: 1862c, Practica Geometriae, Scritti di Leonardo Pisano matematico del secolo decimoterzo pubblicato da Baldassarre Boncompagni. Volume II (Practica Geometriae ed opuscoli), Tipografia delle Scienze matematiche e fisiche, Roma, 1-224.
- Franci, R.: 2002, Il Liber abaci di Leonardo Fibonacci. La matematica nella società e nella cultura, Bollettino dell’Unione Matematica Italiana 8, 293-328.
- Genocchi, A.: 1855a, Intorno a tre scritti inediti di Leonardo Pisano pubblicati da Baldassare Boncompagni. Nota, Annali di scienze matematiche e fisiche 6, 115-120.
- Genocchi, A.: 1855b, Sopra tre scritti inediti di Leonardo Pisano pubblicati da B. Boncompagni. Note analitiche di Angelo Genocchi, Annali di scienze matematiche e fisiche 6, 161-185, 219-251, 273-320, 345-362.
- Genocchi, A.: 1855c, Passages of letters by genocchi to boncompagni, Annali di scienze matematiche e fisiche 6, 129-134, 186-194, 195-205, 206-209, 251-253, 254-257, 257-259.
- Grimm, R. E.: 1973, The autobiography of leonardo pisano, The Fibonacci Quarterly 11(1), 99-104.
- Horadam, A. F.: 1991, Fibonacci’s Mathematical Letter to Master Theodorus, The Fibonacci Quarterly 29(2), 103-107.
- Hughes, B.: 2008, Fibonacci’s De Practica Geometrie, Springer, New York.
- Lagrange, J. L.: 1769, Sur la solution de problème indéterminés du second degré, in Mémoires de l’Académie royale des Sciences et Belles-Lettres de Berlin, t. XXIII, OEuvres de Lagrange, Vol. 2, Gauthier-Villars, Paris, 375-535.
- Lüneburg, H.: 1991, Fibonaccis aufsteigende Kettenbrüche, ein elegantes Werkzeug mittelalterlicher Rechenkunst, Sudhoffs Archiv 75/76, 129-139.
- Palladino, D., Bussotti, P.: 2002, Il principio di induzione 1. Storia e ruolo, Nuova Secondaria 2, 41-51.
- Picutti, E.: 1979, Il libro dei quadrati di Leonardo Pisano e i problemi di analisi indeterminata nel Codice Palatino 557 della Biblioteca Nazionale di Firenze, Physis
- , 195-339.
- Picutti, E.: 1983, Il ”Flos” di Leonardo Pisano. Traduzione e commento, Physis 25, 293-387.
- Pisano, R., Bussotti, P.: 2013, On popularization of Scientific Education in Italy between 12th and 16th Century, Problems of Education in the 21th Century 57, 90-101.
- Pisano, R., Bussotti, P.: 2015, Fibonacci and the Reception of the Abacus Schools in Italy. Mathematical Conceptual Streams and their Changing Relationship with Society. Almagest 6, 2, 127-165.
- Rashed, R.: 1994, Fibonacci et les Mathématiques arabes, Micrologus 2, 145-160.
- Rashed, R.: 2003, Fibonacci et le Prolongment Latin des Mathématiques Arabes, Bollettino di storia delle scienze XXIII, 55-73.
- Sigler, L.: 2002, Fibonacci’s Liber Abaci, Springer, New York.
- Woepcke, F.: 1854-55, Sur le traité des nombres carrés de Léonard de Pise, retrouve et publié par M. le prince Balthasar Boncompagni, Journal de mathématiques pures et appliquées, 1re série, 20, 54-62.
- Woepcke, F.: 1860-61, Recherches sur plusieurs ouvrages de Léonard de Pise. III- Traduction d’un fragment anonyme sur la formation des triangles rectangles en nombres entiers et d’un traité sur le meme subjet de Abou Dia’far Mohammed ben Alo¸oain, Imprimerie des Sciences Mathématiques et Physiques, Rome.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.