Twórcza rola patologii w matematyce

Jerzy Pogonowski

Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia (2014)

  • Volume: 6, page 101-121
  • ISSN: 2080-9751

Abstract

top
We discuss the creative role of objects called pathologies by mathematicians.Pathologies may become “domesticated” and give rise to newmathematical domains. Thus they influence changes in mathematical intuition.

How to cite

top

Jerzy Pogonowski. "Twórcza rola patologii w matematyce." Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 6 (2014): 101-121. <http://eudml.org/doc/296394>.

@article{JerzyPogonowski2014,
abstract = {We discuss the creative role of objects called pathologies by mathematicians.Pathologies may become “domesticated” and give rise to newmathematical domains. Thus they influence changes in mathematical intuition.},
author = {Jerzy Pogonowski},
journal = {Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia},
keywords = {pathological object; paradox; mathematical intuition; counterexample},
language = {pol},
pages = {101-121},
title = {Twórcza rola patologii w matematyce},
url = {http://eudml.org/doc/296394},
volume = {6},
year = {2014},
}

TY - JOUR
AU - Jerzy Pogonowski
TI - Twórcza rola patologii w matematyce
JO - Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia
PY - 2014
VL - 6
SP - 101
EP - 121
AB - We discuss the creative role of objects called pathologies by mathematicians.Pathologies may become “domesticated” and give rise to newmathematical domains. Thus they influence changes in mathematical intuition.
LA - pol
KW - pathological object; paradox; mathematical intuition; counterexample
UR - http://eudml.org/doc/296394
ER -

References

top
  1. Błaszczyk, P.: 2007, Analiza filozoficzna rozprawy Richarda Dedekinda Stetigkeit und irrationale Zahlen, Wydawnictwo Naukowe AP w Krakowie, Kraków. 
  2. Corry, L.: 2004, Modern Algebra and the Rise of Mathematical Structures, Birkhäuser, Basel-Boston-Berlin. 
  3. Dehn, M.: 1902, Űber den Rauminhalt, Mathematische Annalen 55, 465-478. 
  4. Feferman, S., Friedman, H. M., Maddy, P., Steel, J. R.: 2000, Does mathematics need new axioms?, The Bulletin of Symbolic Logic 6, 401-446. 
  5. Friedman, H. M.: 1992, The Incompleteness Phenomena, w: F. E. Bowder (ed.), Mathematics into the Twenty-first Century. 1988 Centennial Symposium, August 8-12, American Mathematical Society, Providence, Rhode Island, 49-84. 
  6. Gelbaum, B. R., Olmsted, J. M. H.: 1990, Theorems and Counterexamples in Mathematics, Springer-Verlag, New York. 
  7. Gelbaum, B. R., Olmsted, J. M. H.: 2003, Counterexamples in Analysis, Dover Publications, Inc., Mineola, New York. 
  8. Hahn, H.: 1956, The crisis of intuition, w: J. R. Newman (ed.), The World of Mathematics, vol. 3, Dover Publications, Inc., Mineola, New York, 1957-1976. 
  9. Havil, J.: 2007, Nonplussed! Mathematical Proof of Implausible Ideas, Princeton University Press, Princeton and Oxford. 
  10. Havil, J.: 2008, Impossible? Surprising Solutions to Counterintuitive Conundrums, Princeton University Press, Princeton and Oxford. 
  11. Kanamori, A.: 1994, The Higher Infinite. Large Cardinals in Set Theory from Their Beginnings, Oxford University Press, New York, Oxford. 
  12. Kline, M.: 1994, Mathematical Thought from Ancient to Modern Times, Springer-Verlag, Berlin. 
  13. Laczkovich, M.: 1990, Equidecomposability and discrepancy: a solution to Tarski’s circle squaring problem, Journal für die Reine und Angewandte Mathematik 404, 77-117. 
  14. Lakatos, I.: 1976, Proofs and Refutations. The Logic of Mathematical Discovery, Cmbridge University Press, Cambridge. 
  15. Lakoff, G., Johnson, M.: 1980, Metaphors we live by, University of Chicago Press, Chicago. 
  16. Lakoff, G., Núñez, R.: 2000, Where Mathematics Comes From. How the Embodied Mind Brings Mathematics into Being, Basic Books, New York. 
  17. Levitin, A., Levitin, M.: 2011, Algorithmic Puzzles, Oxford University Press, New York. 
  18. Norwid, C. K.: 1964, Fatum, Poeci polscy. Cyprian Norwid, Czytelnik, 89. 
  19. Petković, M. S.: 2009, Famous Puzzles of Great Mathematicians, The American Mathematical Society, Providence, Rhode Island. 
  20. Pogonowski, J.: 2011, Geneza matematyki wedle kognitywistów, Investigationes Linguisticae 23, 106-147. http://inveling.amu.edu.pl/, http://www.logic.amu.edu.pl/images/3/3c/Littlejill01.pdf. 
  21. Pogonowski, J..: 2012, Matematyczne metafory kognitywistów. http://www.logic.amu.edu.pl/images/0/0e/Mmk2012.pdf. 
  22. Posamentier, A. S., Lehmann, I.: 2013, Magnificent Mistakes in Mathematics, Prometheus Books, Amherst, New York. 
  23. Scorpan, A.: 2005, The Wild World of 4-Manifolds, American Mathematical Society, Providence, Rhode Island. 
  24. Steen, L. A., Seebach, J. A., Jr.: 1995, Counterexamples in Topology, Dover Publications, Inc., New York. 
  25. Tarski, A.: 1925, Probléme 38, Fundamentha Mathematicae 7, 381. 
  26. Thurston, W.: 1997, Three-Dimensional Geometry and Topology. Volume 1 (edited by Silvio Levy), Princeton University Press, Princeton, New Jersey. 
  27. Winkler, P.: 2004, Mathematical Puzzles. A Connoisseur’s Collection, A K Peters, Natick, Massachusetts. 
  28. Winkler, P.: 2007, Mathematical Mind-Benders, A K Peters, Ltd., Wellesley, MA. 
  29. Wise, G. L., Hall, E. B.: 1993, Counterexamples in Probability and Real Analysis, Oxford University Press, Oxford University Press. 
  30. Wojtylak, P.: 1979, An example of a finite though finitely non-axiomatizable matrix, Fundamentha Mathematicae 17, 39-46. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.