Twórcza rola patologii w matematyce
Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia (2014)
- Volume: 6, page 101-121
- ISSN: 2080-9751
Access Full Article
topAbstract
topHow to cite
topJerzy Pogonowski. "Twórcza rola patologii w matematyce." Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 6 (2014): 101-121. <http://eudml.org/doc/296394>.
@article{JerzyPogonowski2014,
abstract = {We discuss the creative role of objects called pathologies by mathematicians.Pathologies may become “domesticated” and give rise to newmathematical domains. Thus they influence changes in mathematical intuition.},
author = {Jerzy Pogonowski},
journal = {Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia},
keywords = {pathological object; paradox; mathematical intuition; counterexample},
language = {pol},
pages = {101-121},
title = {Twórcza rola patologii w matematyce},
url = {http://eudml.org/doc/296394},
volume = {6},
year = {2014},
}
TY - JOUR
AU - Jerzy Pogonowski
TI - Twórcza rola patologii w matematyce
JO - Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia
PY - 2014
VL - 6
SP - 101
EP - 121
AB - We discuss the creative role of objects called pathologies by mathematicians.Pathologies may become “domesticated” and give rise to newmathematical domains. Thus they influence changes in mathematical intuition.
LA - pol
KW - pathological object; paradox; mathematical intuition; counterexample
UR - http://eudml.org/doc/296394
ER -
References
top- Błaszczyk, P.: 2007, Analiza filozoficzna rozprawy Richarda Dedekinda Stetigkeit und irrationale Zahlen, Wydawnictwo Naukowe AP w Krakowie, Kraków.
- Corry, L.: 2004, Modern Algebra and the Rise of Mathematical Structures, Birkhäuser, Basel-Boston-Berlin.
- Dehn, M.: 1902, Űber den Rauminhalt, Mathematische Annalen 55, 465-478.
- Feferman, S., Friedman, H. M., Maddy, P., Steel, J. R.: 2000, Does mathematics need new axioms?, The Bulletin of Symbolic Logic 6, 401-446.
- Friedman, H. M.: 1992, The Incompleteness Phenomena, w: F. E. Bowder (ed.), Mathematics into the Twenty-first Century. 1988 Centennial Symposium, August 8-12, American Mathematical Society, Providence, Rhode Island, 49-84.
- Gelbaum, B. R., Olmsted, J. M. H.: 1990, Theorems and Counterexamples in Mathematics, Springer-Verlag, New York.
- Gelbaum, B. R., Olmsted, J. M. H.: 2003, Counterexamples in Analysis, Dover Publications, Inc., Mineola, New York.
- Hahn, H.: 1956, The crisis of intuition, w: J. R. Newman (ed.), The World of Mathematics, vol. 3, Dover Publications, Inc., Mineola, New York, 1957-1976.
- Havil, J.: 2007, Nonplussed! Mathematical Proof of Implausible Ideas, Princeton University Press, Princeton and Oxford.
- Havil, J.: 2008, Impossible? Surprising Solutions to Counterintuitive Conundrums, Princeton University Press, Princeton and Oxford.
- Kanamori, A.: 1994, The Higher Infinite. Large Cardinals in Set Theory from Their Beginnings, Oxford University Press, New York, Oxford.
- Kline, M.: 1994, Mathematical Thought from Ancient to Modern Times, Springer-Verlag, Berlin.
- Laczkovich, M.: 1990, Equidecomposability and discrepancy: a solution to Tarski’s circle squaring problem, Journal für die Reine und Angewandte Mathematik 404, 77-117.
- Lakatos, I.: 1976, Proofs and Refutations. The Logic of Mathematical Discovery, Cmbridge University Press, Cambridge.
- Lakoff, G., Johnson, M.: 1980, Metaphors we live by, University of Chicago Press, Chicago.
- Lakoff, G., Núñez, R.: 2000, Where Mathematics Comes From. How the Embodied Mind Brings Mathematics into Being, Basic Books, New York.
- Levitin, A., Levitin, M.: 2011, Algorithmic Puzzles, Oxford University Press, New York.
- Norwid, C. K.: 1964, Fatum, Poeci polscy. Cyprian Norwid, Czytelnik, 89.
- Petković, M. S.: 2009, Famous Puzzles of Great Mathematicians, The American Mathematical Society, Providence, Rhode Island.
- Pogonowski, J.: 2011, Geneza matematyki wedle kognitywistów, Investigationes Linguisticae 23, 106-147. http://inveling.amu.edu.pl/, http://www.logic.amu.edu.pl/images/3/3c/Littlejill01.pdf.
- Pogonowski, J..: 2012, Matematyczne metafory kognitywistów. http://www.logic.amu.edu.pl/images/0/0e/Mmk2012.pdf.
- Posamentier, A. S., Lehmann, I.: 2013, Magnificent Mistakes in Mathematics, Prometheus Books, Amherst, New York.
- Scorpan, A.: 2005, The Wild World of 4-Manifolds, American Mathematical Society, Providence, Rhode Island.
- Steen, L. A., Seebach, J. A., Jr.: 1995, Counterexamples in Topology, Dover Publications, Inc., New York.
- Tarski, A.: 1925, Probléme 38, Fundamentha Mathematicae 7, 381.
- Thurston, W.: 1997, Three-Dimensional Geometry and Topology. Volume 1 (edited by Silvio Levy), Princeton University Press, Princeton, New Jersey.
- Winkler, P.: 2004, Mathematical Puzzles. A Connoisseur’s Collection, A K Peters, Natick, Massachusetts.
- Winkler, P.: 2007, Mathematical Mind-Benders, A K Peters, Ltd., Wellesley, MA.
- Wise, G. L., Hall, E. B.: 1993, Counterexamples in Probability and Real Analysis, Oxford University Press, Oxford University Press.
- Wojtylak, P.: 1979, An example of a finite though finitely non-axiomatizable matrix, Fundamentha Mathematicae 17, 39-46.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.