Regularity for minimizers of non-autonomous non-quadratic functionals in the case : an a priori estimate
Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche (2018)
- Volume: 85, Issue: 1, page 185-200
- ISSN: 0370-3568
Access Full Article
topAbstract
topHow to cite
topGentile, Andrea. "Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate." Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche 85.1 (2018): 185-200. <http://eudml.org/doc/296735>.
@article{Gentile2018,
abstract = {We establish an a priori estimate for the second derivatives of local minimizers of integral functionals of the form \begin\{equation*\}\mathcal\{F\}(\nu, \Omega) = \int\_\{\Omega\} f(x, D\nu(x))\, dx \end\{equation*\} with convex integrand with respect to the gradient variable, assuming that the function that measures the oscillation of the integrand with respect to the $x$ variable belongs to a suitable Sobolev space. The novelty here is that we deal with integrands satisfying subquadratic growth conditions with respect to gradient variable.},
author = {Gentile, Andrea},
journal = {Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche},
keywords = {Local minimizers; A priori estimate; Sobolev coefficients},
language = {eng},
month = {12},
number = {1},
pages = {185-200},
publisher = {Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini},
title = {Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate},
url = {http://eudml.org/doc/296735},
volume = {85},
year = {2018},
}
TY - JOUR
AU - Gentile, Andrea
TI - Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate
JO - Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche
DA - 2018/12//
PB - Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini
VL - 85
IS - 1
SP - 185
EP - 200
AB - We establish an a priori estimate for the second derivatives of local minimizers of integral functionals of the form \begin{equation*}\mathcal{F}(\nu, \Omega) = \int_{\Omega} f(x, D\nu(x))\, dx \end{equation*} with convex integrand with respect to the gradient variable, assuming that the function that measures the oscillation of the integrand with respect to the $x$ variable belongs to a suitable Sobolev space. The novelty here is that we deal with integrands satisfying subquadratic growth conditions with respect to gradient variable.
LA - eng
KW - Local minimizers; A priori estimate; Sobolev coefficients
UR - http://eudml.org/doc/296735
ER -
References
top- Acerbi, E. and Fusco, N. (1989), Regularity for minimizers of nonquadratic functionals: The case , J. Math. Anal. Appl., 140, no. 1, 115-135. Zbl0686.49004MR997847DOI10.1016/0022-247X(89)90098-X
- Baisón, A. L., Clop, A., Giova, R., Orobitg, J. and Passarelli di Napoli, A. (2017), Fractional differentiability for solutions of nonlinear elliptic equations, Potential Anal., 46, no. 3, 403-430. Zbl1362.35064MR3630402DOI10.1007/s11118-016-9585-7
- Carozza, M., Kristensen, J. and Passarelli di Napoli, A. (2011), Higher differentiability of minimizers of convex variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire28, no. 3, 395-411. Zbl1245.49052MR2795713DOI10.1016/j.anihpc.2011.02.005
- Clop, A., Faraco, D., Mateu, J., Orobitg, J. and Zhong, X. (2009), Beltrami equations with coefficient in the Sobolev space , Publ. Mat., 53, no. 1, 197-230. Zbl1189.30053MR2474121DOI10.5565/PUBLMAT_53109_09
- Clop, A., Giova, R. and Passarelli di Napoli, A. (2017), Besov regularity for solutions of -harmonic equations, Adv. Nonlinear Anal., DOI: 10.1515/anona-2017-0030 Zbl1418.35149MR3918404DOI10.1515/anona-2017-0030
- Cruz-Uribe, D., Moen, K. and Rodney, S. (2016), Regularity results for weak solutions of elliptic PDEs below the natural exponent, Ann. Mat. Pura Appl., (4), 195 , no. 3. Zbl1348.35040MR3500302DOI10.1007/s10231-015-0486-y
- Diening, L., Stroffolini, B. and Verde, A. (2009), Everywhere regularity of functionals with -growth, Manu. Math., 129, 449-481. Zbl1168.49035MR2520895DOI10.1007/s00229-009-0277-0
- Diening, L., Stroffolini, B. and Verde, A. (2011), Lipschitz regularity for some asymptotically convex problems. ESAIM Control Optim. Calc. Var., (1), 17, 178-189. Zbl1231.35031MR2775192DOI10.1051/cocv/2009046
- Eleuteri, M., Marcellini, P., Mascolo, E. (2016), Lipschitz estimates for systems with ellipticity conditions at infinity, Ann. Mat. Pura e Appl., (4), 1951575-1603. Zbl1354.35035MR3537963DOI10.1007/s10231-015-0529-4
- Eleuteri, M., Marcellini, P., Mascolo, E. (2016), Lipschitz continuity for energy integrals with variable exponents, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 2761-87. Zbl1338.35169MR3470676DOI10.4171/RLM/723
- Fusco, N. and Hutchinson, J. E. (1985). partial of function minimizing quasiconvex integrals. Manuscripta Math., 54, 121–143. Zbl0587.49005MR808684DOI10.1007/BF01171703
- Giaquinta, M. (1983), Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud., 105, Princeton University Press. Zbl0516.49003MR717034
- Giaquinta, M. and Modica, G. (1986), Remarks on the regularity of the minimizers of certain degenerate functionals. Manu. Math., 57, 55-99. Zbl0607.49003MR866406DOI10.1007/BF01172492
- Giova, R., Passarelli Di Napoli, A. (2017), Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients, Adv. Calc. Var.. Zbl1406.49040MR3898187DOI10.1515/acv-2016-0059
- Giova, R. (2015), Higher differentiability for n-harmonic systems with Sobolev coefficients, J. Differential Equations, 259, no. 11, 5667-5687. Zbl1326.35155MR3397304DOI10.1016/j.jde.2015.07.004
- Giusti, E. (2003), Direct Methods in the Calculus of Variations, World Scientific Publishing. Zbl1028.49001MR1962933DOI10.1142/9789812795557
- Hajlasz, P. (1996), Sobolev Spaces on an Arbitrary Metric Space, Potential Anal.5 , 403-415. Zbl0859.46022MR1401074DOI10.1007/BF00275475
- Kristensen, J. and Mingione, G. (2010), Boundary Regularity in Variational Problems, Arch Rational Mech. Anal., 198, 369-455. Zbl1228.49043MR2721587DOI10.1007/s00205-010-0294-x
- Kuusi, T. and Mingione, G. (2012), Universal potential estimates, Journal of Functional Analysis, 262, 4205-4269. Zbl1252.35097MR2900466DOI10.1016/j.jfa.2012.02.018
- Passarelli di Napoli, A. (2014), Higher differentiability of minimizers of variational integrals with Sobolev coefficients, Adv. Calc. Var.7 , no. 1, 59-89. Zbl1280.49058MR3176584DOI10.1515/acv-2012-0006
- Passarelli di Napoli, A. (2014), Higher differentiability of solutions of elliptic systems with Sobolev coefficients: The case , Potential Anal.41, no. 3, 715-735. Zbl1315.35048MR3264817DOI10.1007/s11118-014-9390-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.