Regularity for minimizers of non-autonomous non-quadratic functionals in the case 1<p<2: an a priori estimate
Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche (2018)
- Volume: 85, Issue: 1, page 185-200
- ISSN: 0370-3568
Access Full Article
topAbstract
topHow to cite
topReferences
top- Acerbi, E. and Fusco, N. (1989), Regularity for minimizers of nonquadratic functionals: The case 1<p<2, J. Math. Anal. Appl., 140, no. 1, 115-135. Zbl0686.49004MR997847DOI10.1016/0022-247X(89)90098-X
- Baisón, A. L., Clop, A., Giova, R., Orobitg, J. and Passarelli di Napoli, A. (2017), Fractional differentiability for solutions of nonlinear elliptic equations, Potential Anal., 46, no. 3, 403-430. Zbl1362.35064MR3630402DOI10.1007/s11118-016-9585-7
- Carozza, M., Kristensen, J. and Passarelli di Napoli, A. (2011), Higher differentiability of minimizers of convex variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire28, no. 3, 395-411. Zbl1245.49052MR2795713DOI10.1016/j.anihpc.2011.02.005
- Clop, A., Faraco, D., Mateu, J., Orobitg, J. and Zhong, X. (2009), Beltrami equations with coefficient in the Sobolev space W^{1,p}, Publ. Mat., 53, no. 1, 197-230. Zbl1189.30053MR2474121DOI10.5565/PUBLMAT_53109_09
- Clop, A., Giova, R. and Passarelli di Napoli, A. (2017), Besov regularity for solutions of p-harmonic equations, Adv. Nonlinear Anal., DOI: 10.1515/anona-2017-0030 Zbl1418.35149MR3918404DOI10.1515/anona-2017-0030
- Cruz-Uribe, D., Moen, K. and Rodney, S. (2016), Regularity results for weak solutions of elliptic PDEs below the natural exponent, Ann. Mat. Pura Appl., (4), 195 , no. 3. Zbl1348.35040MR3500302DOI10.1007/s10231-015-0486-y
- Diening, L., Stroffolini, B. and Verde, A. (2009), Everywhere regularity of functionals with \phi-growth, Manu. Math., 129, 449-481. Zbl1168.49035MR2520895DOI10.1007/s00229-009-0277-0
- Diening, L., Stroffolini, B. and Verde, A. (2011), Lipschitz regularity for some asymptotically convex problems. ESAIM Control Optim. Calc. Var., (1), 17, 178-189. Zbl1231.35031MR2775192DOI10.1051/cocv/2009046
- Eleuteri, M., Marcellini, P., Mascolo, E. (2016), Lipschitz estimates for systems with ellipticity conditions at infinity, Ann. Mat. Pura e Appl., (4), 1951575-1603. Zbl1354.35035MR3537963DOI10.1007/s10231-015-0529-4
- Eleuteri, M., Marcellini, P., Mascolo, E. (2016), Lipschitz continuity for energy integrals with variable exponents, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 2761-87. Zbl1338.35169MR3470676DOI10.4171/RLM/723
- Fusco, N. and Hutchinson, J. E. (1985). C^{1,\alpha} partial of function minimizing quasiconvex integrals. Manuscripta Math., 54, 121–143. Zbl0587.49005MR808684DOI10.1007/BF01171703
- Giaquinta, M. (1983), Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud., 105, Princeton University Press. Zbl0516.49003MR717034
- Giaquinta, M. and Modica, G. (1986), Remarks on the regularity of the minimizers of certain degenerate functionals. Manu. Math., 57, 55-99. Zbl0607.49003MR866406DOI10.1007/BF01172492
- Giova, R., Passarelli Di Napoli, A. (2017), Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients, Adv. Calc. Var.. Zbl1406.49040MR3898187DOI10.1515/acv-2016-0059
- Giova, R. (2015), Higher differentiability for n-harmonic systems with Sobolev coefficients, J. Differential Equations, 259, no. 11, 5667-5687. Zbl1326.35155MR3397304DOI10.1016/j.jde.2015.07.004
- Giusti, E. (2003), Direct Methods in the Calculus of Variations, World Scientific Publishing. Zbl1028.49001MR1962933DOI10.1142/9789812795557
- Hajlasz, P. (1996), Sobolev Spaces on an Arbitrary Metric Space, Potential Anal.5 , 403-415. Zbl0859.46022MR1401074DOI10.1007/BF00275475
- Kristensen, J. and Mingione, G. (2010), Boundary Regularity in Variational Problems, Arch Rational Mech. Anal., 198, 369-455. Zbl1228.49043MR2721587DOI10.1007/s00205-010-0294-x
- Kuusi, T. and Mingione, G. (2012), Universal potential estimates, Journal of Functional Analysis, 262, 4205-4269. Zbl1252.35097MR2900466DOI10.1016/j.jfa.2012.02.018
- Passarelli di Napoli, A. (2014), Higher differentiability of minimizers of variational integrals with Sobolev coefficients, Adv. Calc. Var.7 , no. 1, 59-89. Zbl1280.49058MR3176584DOI10.1515/acv-2012-0006
- Passarelli di Napoli, A. (2014), Higher differentiability of solutions of elliptic systems with Sobolev coefficients: The case p=n=2, Potential Anal.41, no. 3, 715-735. Zbl1315.35048MR3264817DOI10.1007/s11118-014-9390-0