A Note on Lax Projective Embeddings of Grassmann Spaces
Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche (2018)
- Volume: 85, Issue: 1, page 5-7
- ISSN: 0370-3568
Access Full Article
topAbstract
topHow to cite
topFerrara Dentice, Eva. "A Note on Lax Projective Embeddings of Grassmann Spaces." Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche 85.1 (2018): 5-7. <http://eudml.org/doc/296736>.
@article{FerraraDentice2018,
	abstract = {In the paper (Ferrara Dentice et al., 2004) a complete exposition of the state of the art for lax embeddings of polar spaces of finite rank $\ge 3$ is presented. As a consequence, we have that if a Grassmann space $G$ of dimension 3 and index 1 has a lax embedding in a projective space over a skew–field $K$, then $G$ is the Klein quadric defined over a subfield of $K$. In this paper, I examine Grassmann spaces of arbitrary dimension $d \ge 3$ and index $h \ge 1$ having a lax embedding in a projective space.},
	author = {Ferrara Dentice, Eva},
	journal = {Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche},
	keywords = {Grassmann spaces; Lax embeddings},
	language = {eng},
	month = {12},
	number = {1},
	pages = {5-7},
	publisher = {Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini},
	title = {A Note on Lax Projective Embeddings of Grassmann Spaces},
	url = {http://eudml.org/doc/296736},
	volume = {85},
	year = {2018},
}
TY  - JOUR
AU  - Ferrara Dentice, Eva
TI  - A Note on Lax Projective Embeddings of Grassmann Spaces
JO  - Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche
DA  - 2018/12//
PB  - Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini
VL  - 85
IS  - 1
SP  - 5
EP  - 7
AB  - In the paper (Ferrara Dentice et al., 2004) a complete exposition of the state of the art for lax embeddings of polar spaces of finite rank $\ge 3$ is presented. As a consequence, we have that if a Grassmann space $G$ of dimension 3 and index 1 has a lax embedding in a projective space over a skew–field $K$, then $G$ is the Klein quadric defined over a subfield of $K$. In this paper, I examine Grassmann spaces of arbitrary dimension $d \ge 3$ and index $h \ge 1$ having a lax embedding in a projective space.
LA  - eng
KW  - Grassmann spaces; Lax embeddings
UR  - http://eudml.org/doc/296736
ER  - 
References
top- Ferrara Dentice, E., Marino, G. and Pasini, A. (2004), Lax Projective Embeddings of Polar Spaces, Milan Journal of Mathematics, 72, 335–377. Zbl1222.51004MR2099137DOI10.1007/s00032-004-0028-3
- Wells, A.L. (1983), Universal Projective Embeddings of the Grassmann, Half Spinor and Dual Orthogonal Geometries, Quarterly Journal of Mathematics, Oxford ser. (2), 34, 375–386. Zbl0537.51008MR711527DOI10.1093/qmath/34.3.375
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
  
 