On GE-algebras

Ravikumar Bandaru; Arsham Borumand Saeid; Young Bae Jun

Bulletin of the Section of Logic (2021)

  • Volume: 50, Issue: 1, page 81-96
  • ISSN: 0138-0680

Abstract

top
Hilbert algebras are important tools for certain investigations in intuitionistic logic and other non-classical logic and as a generalization of Hilbert algebra a new algebraic structure, called a GE-algebra (generalized exchange algebra), is introduced and studied its properties. We consider filters, upper sets and congruence kernels in a GE-algebra. We also characterize congruence kernels of transitive GE-algebras.

How to cite

top

Ravikumar Bandaru, Arsham Borumand Saeid, and Young Bae Jun. "On GE-algebras." Bulletin of the Section of Logic 50.1 (2021): 81-96. <http://eudml.org/doc/296790>.

@article{RavikumarBandaru2021,
abstract = {Hilbert algebras are important tools for certain investigations in intuitionistic logic and other non-classical logic and as a generalization of Hilbert algebra a new algebraic structure, called a GE-algebra (generalized exchange algebra), is introduced and studied its properties. We consider filters, upper sets and congruence kernels in a GE-algebra. We also characterize congruence kernels of transitive GE-algebras.},
author = {Ravikumar Bandaru, Arsham Borumand Saeid, Young Bae Jun},
journal = {Bulletin of the Section of Logic},
keywords = {(transitive) GE-algebra; filter; upper set; congruence kernel},
language = {eng},
number = {1},
pages = {81-96},
title = {On GE-algebras},
url = {http://eudml.org/doc/296790},
volume = {50},
year = {2021},
}

TY - JOUR
AU - Ravikumar Bandaru
AU - Arsham Borumand Saeid
AU - Young Bae Jun
TI - On GE-algebras
JO - Bulletin of the Section of Logic
PY - 2021
VL - 50
IS - 1
SP - 81
EP - 96
AB - Hilbert algebras are important tools for certain investigations in intuitionistic logic and other non-classical logic and as a generalization of Hilbert algebra a new algebraic structure, called a GE-algebra (generalized exchange algebra), is introduced and studied its properties. We consider filters, upper sets and congruence kernels in a GE-algebra. We also characterize congruence kernels of transitive GE-algebras.
LA - eng
KW - (transitive) GE-algebra; filter; upper set; congruence kernel
UR - http://eudml.org/doc/296790
ER -

References

top
  1. [1] J. C. Abbott, Semi-boolean algebra, Matematički Vesnik, vol. 4(19) (1967), pp. 177–198. 
  2. [2] R. A. Borzooei, S. Khosravi Shoar, Implication algebras are equivalent to the dual implicative BCK-algebras, Scientiae Mathematicae Japonicae, vol. 63(3) (2006), pp. 429–431. 
  3. [3] R. A. Borzooei, J. Shohani, On generalized Hilbert algebras, Italian Journal of Pure and Applied Mathematics, vol. 29 (2012), pp. 71–86. 
  4. [4] D. Buşneag, A note on deductive systems of a Hilbert algebra, Kobe Journal of Mathematics, vol. 2(1) (1985), pp. 29–35. 
  5. [5] D. Buşneag, Categories of algebraic logic, Editura Academiei Romane (2006). 
  6. [6] S. Celani, A note on homomorphisms of Hilbert algebras, International Journal of Mathematics and Mathematical Sciences, vol. 29(1) (2002), pp. 55–61, DOI: https://doi.org/10.1155/S0161171202011134 
  7. [7] W. Y. C. Chen, J. S. Oliveira, Implication algebras and the Metropolis-Rota axioms for cubic lattices, Journal of Algebra, vol. 171(2) (1995), pp. 383–396, DOI: https://doi.org/10.1006/jabr.1995.1017 
  8. [8] A. Diego, Sur les algèbres de Hilbert, Translated from the Spanish by Luisa Iturrioz. Collection de Logique Mathématique, Sér. A, Fasc. XXI, Gauthier-Villars, Paris; E. Nauwelaerts, Louvain (1966). 
  9. [9] A. Figallo, Jr., A. Ziliani, Remarks on Hertz algebras and implicative semilattices, Bulletin of the Section of Logic, vol. 34(1) (2005), pp. 37–42. 
  10. [10] A. V. Figallo, G. Z. Ramón, S. Saad, A note on the Hilbert algebras with infimum, Matemática Contemporânea, vol. 24 (2003), pp. 23–37, 8th Workshop on Logic, Language, Informations and Computation – WoLLIC'2001 (Brasília). 
  11. [11] S. M. Hong, Y. B. Jun, On deductive systems of Hilbert algebras, Korean Mathematical Society. Communications, vol. 11(3) (1996), pp. 595–600. 
  12. [11] Y. Imai, K. Iséki, On axiom systems of propositional calculi, XIV, Proceedings of the Japan Academy, vol. 42(1) (1966), pp. 19–22, DOI: https://doi.org/10.3792/pja/1195522169 
  13. [13] Y. B. Jun, Commutative Hilbert algebras, Soochow Journal of Mathematics, vol. 22(4) (1996), pp. 477–484. 
  14. [14] H. S. Kim, Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, vol. 66(1) (2007), pp. 113–116. 
  15. [15] A. Monteiro, Lectures on Hilbert and Tarski Algebras, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina (1960). 
  16. [16] A. A. Monteiro, Sur les algèbres de Heyting symétriques, Portugaliae Mathematica, vol. 39(1–4) (1980), pp. 1–237 (1985), special issue in honor of António Monteiro. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.